Analisi Matematica II, Anno Accademico 2017-2018. Ingegneria Edile e Architettura

Vincenzo M. Tortorelli FOGLIO DI TEORIA n. 22

TEOREMI PER IL CALCOLO DEGLI INTEGRALI INTEGRALI NON ORIENTATI SU SUPERFICIE

I: scambio e accorpamento dell'ordine integrazione

Una proprietà degli insiemi misurabili, di dimostrazione più lunga (che passa per gradi dai rettangoli cartesiani, ove è ovvia, agli aperti e quindi agli insiemi misurabili) è il seguente teorema che riguarda le sezioni di un insieme misurabile.

Sezioni Se $E \subseteq \mathbb{R}^N$, siano V e W due sottospazi ortogonali complementari $V \oplus W = \mathbb{R}^N$, con proiezioni ortogonali P^V e P^W . La sezione di E parallela V, di base $w \in W$ è

$$S_V^w E = S^w E = \{ x \in E : P^W x = w \},$$

la sua proiezione su V è denotata con $E_w^V = E_w = P^V S^w E$.

Teorema di sezione 1 Se E è misurabile in \mathbf{R}^N e V e W sono sottospazi coordinati complementari identificati rispettivamente con \mathbf{R}^M ed \mathbf{R}^{N-M} . Per quasi ogni (rispetto a m_{N-M}) $w \in W \sim \mathbf{R}^{N-M}$ l'insieme E_w è misurabile in $V \sim \mathbf{R}^M$.

Di non breve dimostrazione è anche parte del seguente teorema di sezione:

Teorema di sezione 2 Se E è misurabile in \mathbf{R}^N e V e W sono sottospazi coordinati complementari identificati rispettivamente con \mathbf{R}^M ed \mathbf{R}^{N-M} . La funzione definita per m_{N-M} -quasi ogni $w \in W \sim \mathbf{R}^{N-M}$ da $w \mapsto m_M(E_w)$ è misurabile.

Da tale teorema segue direttamente la caratterizzazione di misurabilità con i sottografici:

Teorema 4: misura dei sottografici (FT 21) Una $f: \mathbb{R}^N \to \mathbb{R}$ è misurabile se e solo se il suo sottografico è N+1-misurabile. Se $f \geq 0$ ed S^+ è il sottografico positivo inoltre

$$m_{N+1}(S^+) = \int_{\mathbf{R}^N} f(x) \, dx.$$

Dimostrazione: ultimo paragrafo.

Teorema di sezione 3 Siano E misurabile in \mathbf{R}^N e V e W sottospazi coordinati complementari identificati rispettivamente con \mathbf{R}^M , con coordinate $x_{\sigma} = (x_{\sigma_1}, \dots, x_{\sigma_M})$, ed \mathbf{R}^{N-M} , con coordinate $x_{\tau} = (x_{\tau_1}, \dots, x_{\tau_{N-M}})$, ove $x = (x_1, \dots, x_N) \in \mathbf{R}^N$.

i- m_{N-M} -quasi ogni $x_{\tau} \in W \sim \mathbf{R}^{N-M}$ si ha $E_{x_{\tau}} \in \mathcal{M}_M$;

ii- la funzione $x_{\tau} \mapsto m_M(E_{x_{\tau}})$, definita m_{N-M} q.o., è misurabile in \mathbf{R}^{N-M} ;

iii-
$$m_N(E) = \int \chi_E(x) dx = \int m_M(E_{x_\tau}) dx_\tau = \int \left(\int \chi_{E_{x_\tau}}(x_\sigma) dx_\sigma\right) dx_\tau,$$

Sostituendo le x_{τ} alle x_{σ} simmetricamente valgono i-, ii- è iii-, ciò comporta:

$$m_N(E) = \int \chi_E(x) dx = \int \left(\int \chi_{E_{x_{\sigma}}}(x_{\tau}) dx_{\tau} \right) dx_{\sigma} = \int \left(\int \chi_{E_{x_{\tau}}}(x_{\sigma}) dx_{\sigma} \right) dx_{\tau}.$$

Osservazione: - se $E = B \times A$, $B \in \mathcal{M}_M$, $A \in \mathcal{M}_{N-M}$, $\sigma = 1, \ldots, M$, $\tau = M + 1, \ldots, N$, tenendo presente che per un prodotto cartesiano le sezioni sono o un fattore del prodotto

cartesiano o il vuoto,
$$(B \times A)_{x_{\tau}} = \begin{cases} B, & x_{\tau} \in A \\ \emptyset, & x \notin A \end{cases}$$
 per ogni $x_{\tau} \in \mathbf{R}^{N-M}$, la iii) diventa

$$m_N(B \times A) = \int_A m_M(B) dx_\tau = m_M(B) \cdot \int_A dx_\tau = m_M(B) m_{N-M}(A).$$

Corollario: prodotti di misure esterne (FT 21) $m_N^*(B \times A) = m_M^*(B) \cdot m_{N-M}^*(A)$, per ogni $B \subseteq \mathbf{R}^M$, $A \subseteq \mathbf{R}^{N-M}$.

Dimostrazione: ultimo paragrafo.

Osservazione: - se gli insiemi E in gioco sono quelli generati solo da aperti con le operazioni di σ -algebra (complementare, unioni ed intersezioni numerabili), i così detti insiemi boreliani, i teoremi valgono con "per ogni" invece che con "per quasi ogni".

- Si nota che un boreliano è misurabile secondo Lebesgue. Non è vero il viceversa. I misurabili secondo Lebesgue sono esattamente i sottoinsiemi generati con le operazioni di complemento, unioni ed intersezioni numerabili, a partire dagli aperti e da tutti gli insiemi di misura nulla. I boreliani a partire solo dagli aperti.

Il punto è che effettivamente vi sono insiemi di misura nulla che non sono boreliani.

Infatti i boreliani sono "tanti quanti" (in bigezione con) gli aperti, gli aperti sono "tanti quanti" le successioni di ipercubi diadici (teorema di tassellamento FT 21), gli ipercubi diadici sono tanti quanti i numeri naturali, quindi i boreliani sono tanti quanti le successioni di numeri razionali che sono "tante quante" i numeri reali. Invece i sottoinsiemi dei numeri reali "sono di più" dei nuemeri reali: nel senso che non vi sono funzioni surgettive da R all'insieme dei suoi sottoinsiemi.

Concludendo dato un boreliano di misura nulla che abbia "tanti" elementi "quanti" (in bigezione con) i numeri reali, per esempio i numeri reali stessi come sottoinsime di \mathbb{R}^2 , ha sottoinsiemi (quindi di misura nulla, quindi misurabili secondo Lebesgue) che non sono boreliani.

Mediante approssimazione con funzioni semplici si arriva ai seguenti importanti teoremi:

Teorema di Tonelli Se f è misurabile in \mathbb{R}^N , non negativa, e V e W sono sottospazi coordinati complementari identificati rispettivamente con \mathbf{R}^{M} , con coordinate $x_{\sigma} = (x_{\sigma_{1}}, \dots, x_{\sigma_{M}})$, ed \mathbf{R}^{N-M} , con coordinate $x_{\tau} = (x_{\tau_1}, \dots, x_{\tau_{N-M}})$, considerando la base canonica $\{e_i\}_{1 \leq i \leq N}$ di \mathbf{R}^N : $x = (x_1, \dots, x_N) = x_{\sigma_1} e_{\sigma_1} + \dots + x_{\sigma_M} e_{\sigma_M} + \dots + x_{\tau_{N-M}} e_{\tau_{N-M}}.$

i- per m_{N-M} -quasi ogni $x_{\tau} \in W \sim \mathbf{R}^{N-M}$ si ha $x_{\sigma} \mapsto f(x)$ è misurabile in \mathbf{R}^{M} ,

ii- la funzione $x_{\tau} \mapsto \int f(x)dx_{\sigma}$, definita m_{N-M} q.o., è misurabile in \mathbf{R}^{N-M} ;

iii-
$$\int f(x)dx = \int \left(\int f(x)dx_{\sigma}\right)dx_{\tau}$$
.
Sostituendo le x_{τ} alle x_{σ} simmetricamente valgono i-, ii- e iii-, ciò comporta:

$$\int f(x)dx = \int \left(\int f(x)dx_{\tau}\right)dx_{\sigma} = \int \left(\int f(x)dx_{\sigma}\right)dx_{\tau}.$$

Teorema di Fubini Con le notazioni adottate, se f è sommabile su \mathbb{R}^N , $f \in \mathcal{L}^1(\mathbb{R}^N)$, valgono analoghe conclusioni:

i- per m_{N-M} -quasi ogni $x_{\tau} \in W \sim \mathbf{R}^{N-M}$ si ha $x_{\sigma} \mapsto f(x)$, è sommabile su \mathbf{R}^{M} ,

ii- la funzione $x_{\tau} \mapsto \int f(x) dx_{\sigma}$, definita m_{N-M} q.o., è sommabile su \mathbf{R}^{N-M} ;

simmetricamente per $x_{\tau} \mapsto f(x)$, e vale:

iii-
$$\int f(x)dx = \int \left(\int f(x)dx_{\tau}\right)dx_{\sigma} = \int \left(\int f(x)dx_{\sigma}\right)dx_{\tau}.$$

Osservazione: - il teorema di Tonelli vale anche per valori infiniti degli integrali, quello Fubini per funzioni con segno variabile ma sommabili o almeno integrabili cfr. FT 21.

- Anche se f è misurabile l'esistenza, in senso forte, con sommabilità, degli integrali iterati e la loro eguaglianza non comporta l'esistenza dell'integrale complessivo:

per q.o. x_{τ} le funzioni $x_{\sigma} \mapsto f(x)$ possono essere sommabili, anche per q.o. x_{σ} le $x_{\tau} \mapsto f(x)$, inoltre possono essere sommabili le funzioni definite dagli integrali parziali

$$\mathcal{I}_{\sigma}(x_{\tau}) = \int f(x)dx_{\sigma} \in \mathbf{R} \text{ e } \mathcal{I}_{\tau}(x_{\sigma}) = \int f(x)dx_{\tau} \in \mathbf{R}, \text{ e i loro integrali, gli integrali iterati, essere uguali } \int \left(\int f(x)dx_{\sigma}\right)dx_{\tau} = \int \left(\int f(x)dx_{\tau}\right)dx_{\sigma} \in \mathbf{R}, \text{ ma } \int f(x)dx \text{ può non esistere,}$$

cioè f non essere integrabile: né f^+ né f^- essere sommabili. Un esempio è dato nell'ultimo paragrafo. Vale però il seguente teorema immediata conseguenza dei precedenti:

Teorema di Fubini-Tonelli Con le precedenti notazioni, se f è misurabile in \mathbf{R}^N , e almeno uno degli integrali iterati del suo valore assoluto è finito $\int \left(\int |f(x)| dx_{\sigma}\right) dx_{\tau} < +\infty$ o

$$\int \left(\int |f(x)| \ dx_{\tau} \right) dx_{\sigma} < +\infty, \text{ allora } f \text{ è sommabile e}$$

$$\int f(x) dx = \int \left(\int f(x) dx_{\tau} \right) dx_{\sigma} = \int \left(\int f(x) dx_{\sigma} \right) dx_{\tau}.$$

Osservazione: nel caso di funzioni f per cui la preimmagine di ogni aperto sia un sottoinsiemie boreliano, per esempio che siano limiti puntuali (in tutti punti non solo quasi ovunque) di successioni di funzioni del tipo $f_n \cdot \chi_{B_n}$, $n \in \mathbb{N}$, con f_n continua e B_n boreliano, i teoremi valgono con "per ogni" invece che con "per quasi ogni".

Esercizio: trovare una funzione misurabile $f = f(x,y) \in \mathbf{R}$, $(x,y) \in \mathbf{R}^2$ per cui le funzioni sezione $x \mapsto f(x,y)$, $y \mapsto f(x,y)$ sono sempre definite e sommabili, come i loro integrali

$$y \mapsto \int f(x,y)dx, \ x \mapsto \int f(x,y)dy, \ \mathrm{ma} \ \int \left(\int f(x,y)dx\right)dy \neq \int \left(\int f(x,y)dy\right)dx.$$

[Suggerimento: per la successione a due indici f(m, n), $m, n \in \mathbb{N}$, che vale 1 se m = n, e -1 se m + 1 = n, altrimenti 0, si verifichi che le serie iterate sono diverse].

Osservazione: così facendo si riduce l'integrale ad un'iterazione di integrali su **R**, potendo permutare l'ordine di integrazione. E, per esempio, nel caso di funzioni che nelle singole variabili siano continue a tratti, si possono usare le regole del calcolo in un variabile:

$$\int f(x)dx = \int \left(\dots \left(\int \left[\int \left\{ \dots \int \left\{ \int f(x)dx_{\sigma_1} \right\} dx_{\sigma_2} \dots \right\} dx_{\sigma_M} \right] dx_{\tau_1} \right) \dots \right) dx_{\tau_{N-M}}.$$

Osservazione: - per $N=3,\ M=2,\ N-M=1,\ \tau_1=\tau=3,\ {\rm con}\ x=x_1,\ y=x_2,\ z=x_3$ le formule finali si leggono

$$\int f(x,y,z)dxdydz = \int \left(\int f(x,y,z)dz\right)dxdy = \int \left(\int f(x,y,z)dxdy\right)dz.$$

nel secondo integrale si integra "per fili" che variano su un dominio bidimensionale, nel terzo integrale si integra per "fette" che variano al variare di un solo parametro.

- Se il dominio di integrazione è un sotto insieme misurabile di ${\bf R}^n$ sostituendo $f\chi_E$ ad f:

$$\int_{E} f(x)dx = \int_{P^{V}(E)} \left(\int_{E_{x_{\sigma}}} f(x)dx_{\tau} \right) dx_{\sigma} = \int_{P^{W}(E)} \left(\int_{E_{x_{\tau}}} f(x)dx_{\sigma} \right) dx_{\tau}.$$

Osservazione: - il teorema, nel caso di domini normali, cfr. FT 16 e FT 21, e funzioni integrande continue, si può dimostrare usando la continuità uniforme degli integrali dipendenti da parametri. cfr. esercizio finale nel paragrafo successioni di successioni FT 9.

- Per domini normali (semplici rispetto ad una variabile) potrebbe convenire integrare per "fili" o per "fette" (N-1)-dimensionali. Data una presentazione di un dominio normale la variabile di "filo" è quella semplice, eventualmente dipendente da tutte le altre: l'integrale rispetto a questa è il più interno. Integrando per fette, le variabili di fetta sono quelle eventualmente dipendenti da altre: l'integrale più esterno è quello rispetto alla variabile indipendente.

Per esempio $E=\{(x,y,z):\phi(x,z)\leq y\leq \gamma(x,z),\ \Phi(z)\leq x\leq \Gamma(z),\ a\leq z\leq b\}$ si ha

$$\int_{E} f(x,y,z) dx dy dz = \int_{a}^{b} \left(\int_{\{(x,y):\phi(x,z) \leq y \leq \gamma(x,z), \ \Phi(z) \leq x \leq \Gamma(z)\} = E_{z}} f(x,y,z) dx dy \right) dz \text{ per fette,}$$

$$\int_{E} f(x,y,z) dx dy dz = \int_{\{(x,z):\Phi(z) \leq x \leq \Gamma(z), \ a \leq z \leq b\} = P^{(x,z)}(E)} \left(\int_{\phi(x,z)}^{\gamma(x,z)} f(x,y,z) dy \right) dx dz, \text{ per fili.}$$
Iterando ci si riduce a
$$\int_{a}^{b} \left(\int_{\Phi(z)}^{\Gamma(z)} \left(\int_{\phi(x,z)}^{\gamma(x,z)} f(x,y,z) dy \right) dx \right) dz,$$

Esempi: - si considerino in \mathbb{R}^2 i seguenti quadrati di lato 2 sulla diagonale principale nel primo

quadrante:
$$Q_0 = [0; 2] \times [0; 2], \dots, Q_n = (2n, 2n) + Q_0 = [2n; 2n + 2] \times [2n; 2n + 2], \dots, n \in \mathbb{N}.$$

i- Si considerino anche i quadrati $R_n = (2,0) + Q_n$ traslati a destra di 2 degli interni dei Q_n .

- Sia quindi
$$g(x,y) = \begin{cases} 1, & (x,y) \in Q_n \\ -1, & (x,y) \in R_n. \\ 0, & \text{altrimenti} \end{cases}$$

- - Fissato $x \neq 2(n+1), n \in N$ la $y \mapsto g(x,y)$ o è nulla per x < 0, o è la funzione caratteristica di [0;2] per $0 \le x < 2$, o è la differenza tra le funzioni caratteristiche di intervalli di egual lunghezza per 2(n+1) < x < 2(n+2). Pertanto per $x \neq 2(n+1), n \in \mathbb{N}$

$$\int g(x,y) dy = \begin{cases} 1, & 0 \le x < 2 \\ 0, & 2(n+1) < x < 2(n+2) \text{ o } x < 0 \end{cases}. \text{ Pertanto } \int \left(\int g(x,y) \, dy \right) \, dx = 4.$$

- - Invece fissato $y \neq 2(n+1), n \in N$ la $y \mapsto g(x,y)$ o è nulla per y < 0, o è sempre differenza funzione tra le funzioni caratteristiche di intervalli di egual lunghezza.

Quindi
$$y \neq 2(n+1)$$
, $n \in \mathbb{N}$ si ha $\int g(x,y)dx = 0$, per cui $\int \left(\int g(x,y)dx\right)dy = 0$.

$$Q_n^{--}, Q_n^{+-}, Q_n^{++}, Q_n^{-+} \text{ ove: } Q_n^{ab} = (2n, 2n) + Q_0^{ab}, \text{ e } Q_0^{--} = (0; 1) \times (0; 1), Q_0^{+-} = (1; 2) \times (0;$$

ii- Ognuno dei
$$Q_n$$
 sia invece suddiviso in quattro quadrati di lato 1 dagli assi dei lati: $Q_n^{--}, Q_n^{+-}, Q_n^{++}, Q_n^{-+}$ ove: $Q_n^{ab} = (2n, 2n) + Q_0^{ab},$ e $Q_0^{--} = (0; 1) \times (0; 1), Q_0^{+-} = (1; 2) \times (0; 1),$ $Q_0^{+-} = (1; 2) \times (1; 2), Q_0^{-+} = (0; 1) \times (1; 2).$ Sia quindi $f(x, y) = \begin{cases} 1, & (x, y) \in Q_n^{--} \cup Q_N^{++} \\ -1, & (x, y) \in Q_n^{--} \cup Q_N^{-+} \\ 0, & \text{altrimenti} \end{cases}$

- - Si ha: f(x,y) = f(y,x), fissato x la $y \to f(x,y)$ è, a parte gli x del tipo 2n, o nulla o è la differenza tra le caratterstiche di due intervalli disgiunti di egual lunghezza, è quindi con integrale nullo. Cioè $y \mapsto \int f(x,y)dy = x \mapsto \int f(x,y)dx \equiv 0$. Per cui sono sommabili e

$$\int \left(\int f(x,y)dy \right) dx = \int \left(\int f(x,y)dx \right) dy = 0.$$

- - D'altra parte $|f(x,y)| = \begin{cases} 1, & (x,y) \in Q_n \setminus \text{assi} \\ 0, & \text{altrimenti} \end{cases}$. Quindi

$$\int |f(x,y)| dxdy = \sum_{n \in \mathbf{N}} \int_{Q_n} dxdy = \sum_{n \in \mathbf{N}} m_2(Q_n) = \sum_{n \in \mathbf{N}} 4 = +\infty.$$

Esercizio: (cfr. FT9 paragrafo successioni di successioni) si trovi una successione a due indici $a_{m,n} \in \mathbf{R}$, $m, n \in \mathbf{N}$ per cui le serie $\sum_{m} a_{m,n}$, $\sum_{n} a_{m,n}$, $\sum_{m} \sum_{n} a_{m,n}$, siano

convergenti ma
$$\sum_{m} \sum_{n} a_{m,n} \neq \sum_{m} \sum_{n} a_{m,n}$$

II: cambiamenti di variabili negli integrali e formula dell'area

Si enunciano i risultati e si danno gli esempi di applicazione più notevoli. La dimostrazione delle parti algebriche (cambio di variabili con trasformazioni lineari affini) è presntata nell'ultimo paragrafo del FT 21. Le dimostrazioni dei punti più semplici e significati sono nell'ulimo paragrafo. Alcuni fatti seppur intuitivi, e necessari per considerare le definizioni buone, non sono di dimostrazione immediata.

II.1: il caso "finito".

1- Invarianza per traslazione: - se $E \in \mathcal{M}_N, v \in \mathbf{R}^N$ allora

$$v + E \in \mathcal{M}_N$$
 e $\int \chi_E(x - v) dx = m_N(v + E) = m_N(E) = \int \chi_E(x) dx$.

- Se f è misurabile, $v \in \mathbf{R}^N$ allora $x \mapsto f(x+v)$ è misurabile e $\int f(x) dx = \int f(x+v) dx$. Dimostrazione: FT 21.
- 2 Rettangoli cartesiani N-dimensionali: i rettangoli cartesiani sono \mathcal{M}_N misurabili; se R è un rettangolo cartesiano N-dimensionale $ve(R) = m_N(E)$:

ovvero se
$$R = \times_{i=1}^{N} [a_i; a_i + \lambda_i] = a + \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ & \vdots & & \\ 0 & \dots & \lambda_N \end{pmatrix} [0; 1]^N = a + \operatorname{Diag}(\lambda_1, \dots, \lambda_N) ([0; 1]^N)$$

si ha $m(a + \text{Diag}([0; 1]^N)) = m(R) = ve(R) = \lambda_1 \dots \lambda_N = \text{detDiag}(\lambda_1, \dots, \lambda_N) \cdot m_N([0; 1]^N).$ Dimostrazione: cfr. FT 21.

3.1- Trasformazioni lineari: - se $L: \mathbf{R}^N \to \mathbf{R}^N$ è lineare affine allora per $E, F \in \mathcal{M}_N$ si ha

$$L(E) \in \mathcal{M}_N \text{ e } m(L(E)) = |\det L| m(E) \text{ , e se } L \text{ è invertibile } m_N(F) = \frac{1}{|\det L|} m_N(L^{-1}F).$$

Cioè, considerando che le funzioni lineari affini hanno jacobiano costante JL(x)v = Lv:

$$m(L(E)) = \int_{L(E)} dy = \int \chi_{L(E)}(y) \, dy = |\det L| m(E) = \int \chi_{E}(x) |\det L| dx = \int_{E} |\det JL(x)| dx,$$

- Misura parallelepipedi di dimensione massima: il parellelepipedo P = P(L) generato dai vettori-spigoli $L^1, \ldots, L^N \in \mathbf{R}^N$, linearmente indipendenti, ovvero di vertici $\vec{0}_{\mathbf{R}^N}, L^1, \ldots, L^N, L^1 + \mathbf{L}^2, \ldots, L^1 + L^N, \ldots, L^1 + \cdots + L^N$, è l'immagine dell'ipercubo unitario $[0; 1]^N$ per la funzione lineare associata alla matrice $L = (L^1 | \ldots | L^N)$: $P = L[0; 1]^N$.

Quindi si ha:
$$m_N(P(L)) = |\det L| \cdot m_N([0;1]^N) = |\det L|$$
.

Dimostrazione: cfr. FT 21.

Osservazione: le dimostrazioni di tali fatti, a partire dalla formula per i parallelepipedi, richiamano il processo di ortogonalizzazione di Gram-Schmidt senza normalizzare. Nel secondo paragrafo del FT 11 si è esposto questo metodo per dare, appunto, l'interpretazione geometrica di volume M-dimensionale di un parallelepipedo M-dimensionale in \mathbf{R}^m , alla quantità $\sqrt{\det^t LL}$, $L=(L^1|\ldots|L^M)$, $m\times M$, $m\geq M$, di rango massimo M, riducendosi a rettangoli (non necessariamente cartesiani) M-dimensionali in \mathbf{R}^m . In particolare nel caso m=M=N si ottiene appunto che $\sqrt{\det^t LL}=|\det L|$ si interpreta come volume di un parallelepipedo.

Infine mediante approssimazione con funzioni semplici, per i teoremi di passaggio al limite dell'integrale si ottiene:

3.2 - Trasformazioni lineari: Siano: L lineare affine, f, g funzioni misurabili non negative, o anche integrabili, su E, misurabile, allora

$$\int_{L(E)} f(y)dy = |\det L| \int_{E} f(L(x)) dx = \int_{E} f(L(x)) |\det JL(x)| dx.$$

per
$$L$$
 invertibile $\int_{L(E)} g(L^{-1}(y))dy = |\det L| \int_{E} g(x) dx = \int_{E} g(x) |\det JL(x)| dx$,

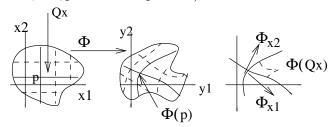
In breve se y = Lx si pone

$$dy = |\det L| dx$$
.

II.2: il caso "infinitesimo".

Da tali teoremi quasi algebrici nel caso "finito"-lineare si passa ai teoremi di analisi del caso "infinitesimo"- non lineare. L'idea di base, per trasformazioni non lineari $\Phi: E \subseteq \mathbf{R}^N \to \mathbf{R}^N$, purtroppo non sufficiente per ottenere una dimostrazione rigorosa ed "aperta" ad ampliamenti, è contenuta nei seguenti due passi, per $p \in E$:

1) per scegliere nel codominio gli elementi inifinitesimi ("gli indivisibili") di volume $dy_1 \dots dy_N$, invece di suddividere direttamente l'immagine $\Phi(E)$ in ipercubi Q_y , cartesiani rispetto alle coordinate y del codominio, (di vertice $\Phi(p)$ e di lati paralleli a $dy_i e_i^{\mathbf{R}^N} \sim k e_i^{\mathbf{R}^N}$: $\Phi_1(p) \leq y_1 \leq \Phi_1(p) + k, \dots, \Phi_N(p) \leq y_N \leq \Phi_N(p) + k$), la si suddivide con i trasformati $\Phi(p + Q_x)$ dei traslati in p degli ipercubi coordinati Q_x (di vertice p e di lati paralleli a $dx_i e_i \sim h e_i$, nel dominio: $p_1 \leq x_1 \leq p_1 + h, \dots, p_N \leq x_N \leq p_N + h$):



2) - i "volumi" dei $\Phi(p+Q_x)$ vengono a loro volta approssimati dai "volumi" degli Nparallelepipedi tangenti, con vertice in $\Phi(p)$ e spigoli generatori $\frac{\partial \Phi}{\partial x_1}(p)h, \ldots, \frac{\partial \Phi}{\partial x_N}(p)h$:

$$\frac{\partial \Phi}{\partial x_i}(p)dx_i = J\Phi(p)dx_i e_i^{\mathbf{R}^N}$$
, piuttosto che $dy_i e_i^{\mathbf{R}^N}$,

ovvero i traslati in $\Phi(p)$ dei trasformati di Q_x mediante lo jacobiano in p di Φ : $J\Phi(p)Q_x$. Come visto i volumi di questi si sanno calcolare e sono $|\det J\Phi(p)|h^N$. Quindi questi sono gli elementi infinitesimi di volume dy scelti nel codominio, e similmente al caso finito si ottiene:

$$dy = |dy_1 \dots dy_N| \sim |\det J\Phi(p)| |dx_1 \dots dx_N| = |\det J\Phi(p)| dx.$$

Naturale è quindi l'interpretazione dei "prodotti di infinitesimi" dx e dy come valori assoluti di determinanti:

$$\left| \det \begin{pmatrix} dy_1 & \dots & 0 \\ & \ddots & \\ 0 & \dots & dy_N \end{pmatrix} \right| = \left| \det \left[J\Phi(p) \begin{pmatrix} dx_1 & \dots & 0 \\ & \ddots & \\ 0 & \dots & dx_N \end{pmatrix} \right] \right|.$$

4.1.1 - "Volume" dell'immagine: Sia $\Phi: A \subseteq \mathbb{R}^N \to \mathbb{R}^N$, $C^1(A)$, A aperto, iniettiva, $\det D_x \Phi \neq 0$ per $x \in A$. Allora per ogni E misurabile contenuto in A

$$m_N(\Phi(E)) = \int_E |\det J\Phi(x)| dx.$$

Punti e valori critici: - per una funzione $\Psi : A \subseteq \mathbf{R}^M \to \mathbf{R}^m$, differenziabile su A aperto, si dice insieme dei punti critici, l'insieme $C_{\Psi} = \{x \in A : D_x \Psi \text{ non è di rango massimo}\} =$

$$= \{ x \in A : \det [{}^t\!J\Psi(x)\,J\Psi(x)] = 0, \, \det [J\Psi(x)\,{}^t\!J\Psi(x)] = 0 \}.$$

- La sua immagine $VC_{\Psi} = \Psi(C_{\Psi})$ insieme dei valori critici.

Lemma: $\Psi: A \subseteq \mathbf{R}^N \to \mathbf{R}^N$, $C^1(A)$, A aperto, $C_{\Psi} = \{x \in A : \det J\Psi(x) = 0\}$, allora l'insieme dei valori critici è nullo: $m_N(\Psi(C_{\Psi})) = 0$.

Essenziale iniettività: una tale Φ si dice essenzialmente iniettiva, se è iniettiva su $A \setminus C_{\Phi}$. 4.1.2 - Sia $\Phi : A \subseteq \mathbf{R}^N \to \mathbf{R}^N$, $C^1(A)$, A aperto, iniettiva su $A \setminus C_{\Phi}$ essenziale iniettività. Allora per ogni E misurabile in $A \setminus C_{\Phi}$, contenuto in A $m_N(\Phi(E)) = \int_E |\det J\Phi(x)| dx$.

4.1.3 - Sia $\Phi : \overline{\Omega} \subseteq \mathbf{R}^N \to \mathbf{R}^N$, continua, Ω aperto, che trasformi nulli in nulli, $C^1(A)$, $A \subseteq \Omega$ aperto per cui $m(\overline{\Omega} \setminus A) = 0$, ed iniettiva su $A \setminus C_{\Phi}$. Allora per ogni E misurabile in $\overline{\Omega} \setminus C_{\Phi}$

$$m_N(\Phi(E)) = \int_{A\cap E} |\det J\Phi(x)| dx.$$

Osservazione: - le ipotesi comportano che $m(\partial\Omega) = 0$: $\partial\Omega \subseteq \overline{\Omega} \setminus A$.

- Come dimostrato in FT 21 le funzioni localmente Lipschitziane su tutto $\overline{\Omega}$ trasformano nulli in nulli e sono continue: se verificano le altre ipotesi sono quindi ammissibili. E.g. trasformazioni continue, iniettive, C^1 "su un numero finito di pezzi regolari chiusi" ricoprenti $\overline{\Omega}$, con $m(\partial\Omega)=0$.
- 4.2.1 Cambiamenti di variabile: Sia $\Phi : \overline{\Omega} \subseteq \mathbf{R}^N \to \mathbf{R}^N$, continua, Ω aperto, che trasformi nulli in nulli, $C^1(A)$, $A \subseteq \Omega$ aperto per cui $m(\overline{\Omega} \setminus A) = 0$, ed iniettiva su $A \setminus C_{\Phi}$: i per ogni $f : \Phi(\overline{\Omega}) \to [0; +\infty]$, misurabile, si ha che $f \circ \Phi |\det J\Phi(x)|$ è misurabile e

$$\int_{\Phi(\overline{\Omega})} f(y) \, dy \ = \ \int_A f\big(\Phi(x)\big) |{\rm det} J\Phi(x)| \, dx,$$

- - inoltre per ogni $f: \Phi(\overline{\Omega}) \to \overline{\mathbf{R}}$ misurabile si ha che f è sommabile su $\Phi(\overline{\Omega})$ se e solo se $f_o\Phi|\det J\Phi|$ lo è su A, e vale la formula soprascritta.
- ii Per ogni $g: \overline{\Omega} \to \overline{\mathbf{R}}$, con $g|\det J\Phi|$ misurabile, si ha che $g_o\Phi|_{A\backslash C_\Phi}^{-1}$ è misurabile, e se o $g \geq 0$ o anche $g \cdot |\det J\Phi|$ integrabile, si ha l'uguaglianza

$$\int_{\Phi(A \setminus C_{\Phi})} g(\Phi|_{A \setminus C_{\Phi}}^{-1}(y)) \, dy = \int_{A} g(x) |\det J\Phi(x)| \, dx,$$

ovvero prolungando arbitrariamente $g_o\Phi|_{A\backslash C_\Phi}^{-1}$ sull'insieme nullo $\Phi(\overline{\Omega}\backslash A)\cup\Phi(C_\Phi)$, e $|{\rm det}J\Phi(x)|$

sull'iniseme nullo
$$\overline{\Omega} \setminus A$$
: $\int_{\Phi(\overline{\Omega})} g(\Phi|_{A \setminus C_{\Phi}}^{-1}(y)) dy = \int_{\overline{\Omega}} g(x) |\det J\Phi(x)| dx$,

Osservazione: - Le formule per i "volumi" 4.1 corrispondono alle 4.2 con $f = \chi_{\Phi(E)}$, $g = \chi_E$. Osservazione: un enunciato generale, con ulteriore sforzo teorico e dimostrativo, richiede solo:

 Φ trasformi nulli in nulli, e sia differenziabile ed iniettiva al di fuori di un insieme nullo. Osservazione: - tali formule non corrispondono all'usuale formula di cambiamento di variabili in una variabile, che riguarda il concetto di integrale orientato. Questa non richiede l'iniettività di Φ e non compare il valore assoluto della derivata:

$$\int_{\Phi(a)}^{\Phi(b)} f(y) \, dy = \int_a^b f(\Phi(x)) \Phi'(x) \, dx, \quad a \le b$$

ivi la mancanza di iniettività di $\Phi: [a;b] \to \mathbf{R}$ comporta *cancellazioni*, infatti l'integrale è "sensibile" al cambiamento di segno di Φ' , e può essere $\Phi(b) < \Phi(a)$.

- Queste formule in una variabile, in ipotesi di iniettività di Φ , diventeno invece:

$$\int_{\min\{\Phi(a),\Phi(b)\}}^{\max\{\Phi(a),\Phi(b)\}} f(y) \, dy = \int_a^b f(\Phi(x)) |\Phi'(x)| \, dx, \quad a \le b$$

Mancando iniettività la presenza del valore assoluto dello jacobiano dà sovrapposizione: i valori $y \in \Phi(\overline{\Omega})$ hanno la molteplictà del numero di elementi della loro preimmagine mediante Φ . Un enunciato che tiene conto di questo è il seguente.

<u>Notazione</u>: se H è un insieme con #H si indica il numero dei suoi elementi se finito, altrimenti si pone $\#H = \infty$. Si usa la convenzione $0 \cdot \infty = 0$.

4.2.2 - Molteplicità: Sia $\Phi : \overline{\Omega} \subseteq \mathbf{R}^N \to \mathbf{R}^N$, continua, Ω aperto, che trasformi nulli in nulli, $C^1(A)$, $A \subseteq \Omega$ aperto per cui $m(\overline{\Omega} \setminus A) = 0$.

i - per ogni $f: \Phi(\overline{\Omega}) \to [0; +\infty]$, misurabile, si ha che $f \circ \Phi | \det J\Phi(x) |, y \mapsto f(y) \# (\Phi^{-1}\{y\})$ sono misurabili, rispettivamente su $\overline{\Omega} \in \Phi(\overline{\Omega})$, e vale l'identità

$$\int_{\Phi(\overline{\Omega})} f(y) \# \left(\Phi^{-1}\{y\}\right) dy = \int_A f\left(\Phi(x)\right) |\det J\Phi(x)| dx,$$

- - inoltre per ogni $f: \Phi(\overline{\Omega}) \to \overline{\mathbf{R}}$ misurabile si ha che $y \mapsto f(y) \# \Phi^{-1}(\{y\})$ è sommabile su $\Phi(\overline{\Omega})$ se e solo se $f \circ \Phi | \det J \Phi |$ lo è su A, e vale la formula soprascritta.

ii - Per ogni $g: \overline{\Omega} \to \overline{\mathbf{R}}$, con $g|\mathrm{det}J\Phi|$ misurabile, per cui o $g \geq 0$ o anche $g \cdot |\mathrm{det}J\Phi|$ sia integrabile,

$$\int_{\Phi(\overline{\mathbb{Q}})} \sum_{x \in \Phi^{-1}\{y\}} g(x) \ dy = \int_{A} g(x) |\det J\Phi(x)| \ dx,$$

ove si intende che, dato un insieme di indici I, e una funzione $\alpha \geq 0$, la scrittura $\sum_{i \in I} \alpha(i)$

sta per $\sup_{\substack{J\subseteq I\\J \text{ finito}}} \sum_{i\in J} \alpha(i) \text{: } \quad \text{nel caso } I = \Phi^{-1}(\{y\}), \ \alpha(x) = g(x).$

Osservazione: - in 4.2.1 e 4.2.2 le prime parti si ottengono dalle seconde con $g = f_0 \Phi$.

- Se la trasformazione Φ è iniettiva, a meno di un insieme di misura nulla (il trasformato del quale nelle ipotesi ha misura nulla), le formule di 4.2.2 ridanno le corrispondenti di 4.2.1.
- Anche nel caso di molteplicità (non iniettività) le ipotesi su Φ possono esser ridotte.

Trasformazioni ammissibili: le Φ che verificano le ipotesi dei teoremi saranno dette trasformazioni ammissibili. Nel caso di essenziale iniettività cambiamenti di coordinate ammissibili.

Coordinate polari e cilindriche: - $\Phi: \mathbf{R}^2 \to \mathbf{R}^2$, $\Phi(r,\phi) = (r\cos\phi, r\sin\phi)$, $\overline{\Omega} = [0; +\infty) \times [0; 2\pi]$, $\Omega = A = (0; +\infty) \times (0; 2\pi)$, $\det J\Phi(r,\phi) = r$, $C_{\phi} \cap A = \emptyset$: cfr. FT 13.

 $-\Phi:\mathbf{R}^3\to\mathbf{R}^3,\,\Phi(r,\phi,z)=(r\cos\phi,r\sin\phi,z),\,\overline{\Omega}=[0;+\infty)\times[0;2\pi]\times\mathbf{R},$

 $\Omega = A = (0; +\infty) \times (0; 2\pi) \times \mathbf{R}, \quad \det J\Phi(r, \phi, z) = r, \quad C_{\phi} \cap A = \emptyset$: cfr.FT13.

- $\Phi: \mathbf{R}^2 \to \mathbf{R}^2$, $\Phi(r,\phi) = (r\cos\phi, r\sin\phi)$, $\overline{\Omega} = [0;3] \times [0;4\pi]$, $\Omega = A = (0;3) \times (0;4\pi)$, $\det J\Phi(r,\phi) = r$, $C_\phi \cap A = \emptyset$, $\Phi(\overline{\Omega}) = \{(x,y): x^2 + y^2 \le 9\}$:

$$2 \cdot 9\pi = 2 \cdot m(\Phi(\overline{\Omega})) = \int_{\overline{\Omega}} |\det J\Phi(x)| \, dx = \int_0^{4\pi} \int_0^3 r dr d\phi = 4\pi \left[\frac{r^2}{2} \right]_0^3 = 18\pi.$$

Coordinate sferiche geografiche: $-\Phi: \mathbf{R}^3 \to \mathbf{R}^3, \Phi(r,\phi,\theta) = (r\cos\theta\cos\phi, r\cos\theta\sin\phi, r\sin\theta), \overline{\Omega} = [0; +\infty) \times [-\pi; \pi] \times \left[-\frac{\pi}{2}; \frac{\pi}{2}\right], \quad \Omega = A = (0; +\infty) \times (-\pi; \pi) \times \left(-\frac{\pi}{2}; \frac{\pi}{2}\right), \det J\Phi(r,\phi,\theta) = r^2\cos\theta, C_\Phi \cap A = \emptyset: \text{ cfr FT 13.}$

- Per
$$\overline{\Omega} = [0; R] \times [-\pi; \pi] \times \left[-\frac{\pi}{2}; \frac{\pi}{2} \right], \quad \Omega = A = (0; R) \times (-\pi; \pi) \times \left(-\frac{\pi}{2}; \frac{\pi}{2} \right),$$

$$\Phi(\overline{\Omega}) = \{(x, y, z) : x^2 + y^2 + z^2 \le R^2\}:$$

$$m(\Phi(\overline{\Omega})) = \int |\det J\Phi(x)| \, dx = \int_{-\pi}^{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{R} r^{2} |\cos \theta| \, dr \, d\theta \, d\phi = 2\pi \left[\sin \theta\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left[\frac{r^{3}}{3}\right]_{0}^{R} = \frac{4}{3}\pi R^{3}.$$

$$\begin{aligned} & - \operatorname{Per} \ \overline{\Omega} = [0;R] \times [0;2h\pi] \times [0;k\pi], \ h, \ \geq 1, \quad \Omega = A = (0;R) \times (0;2h\pi) \times (0;k\pi), \\ & \Phi(\overline{\Omega}) = \{(x,y,z) : x^2 + y^2 + z^2 \leq R^2\} : \\ & M \cdot \frac{4}{3}\pi R^3 = M \cdot m(\Phi(\overline{\Omega})) = \int\limits_{\overline{\Omega}} \left| \det J\Phi(x) \right| dx = \int_0^{2h\pi} \int_0^{k\pi} \int_0^R r^2 |\cos\theta| \ dr \ d\theta \ d\phi = \\ & = 2h\pi \sum_{m=1}^k \int_{(m-1)\pi}^{m\pi} \left| \cos\theta \right| d\theta \ \left[\frac{r^3}{3} \right]_0^R = \frac{2h}{3}\pi R^3 k \int_0^\pi \left| \cos\theta \right| d\theta = \frac{4h}{3}\pi R^3 k \int_0^{\frac{\pi}{2}} \cos\theta \ d\theta = \frac{4hk}{3}\pi R^3 : \end{aligned}$$

$$M = hk$$
.

Esercizio. (Coordinate ipersferiche "geografiche" in \mathbf{R}^N) Per $N\geq 2$ siano:

 $\Omega = A = (0, \infty[\times(-\pi, \pi) \times \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)^{N-2}, \Phi : \mathbf{R}^{N} \to \mathbf{R}^{N}: \Phi(\rho, \vartheta_{1}, \dots, \vartheta_{N-1}) = \mathbf{x} \text{ definita induttivamente}$

da $\begin{cases} \mathbf{x} = \rho \hat{\mathbf{r}}_N = \rho(\cos \vartheta_{N-1} \hat{\mathbf{r}}_{N-1}, \sin \vartheta_{N-1}) \\ \hat{\mathbf{r}}_2 = (\cos \vartheta_1, \sin \vartheta_1) \end{cases}$

ovvero $\begin{cases} x_{N} = \rho \sin \vartheta_{N-1} \\ x_{N-1} = \rho \cos \vartheta_{N-1} \sin \vartheta_{N-2} \\ x_{N-3} = \rho \cos \vartheta_{N-1} \cos \vartheta_{N-2} \sin \vartheta_{N-3} \\ \dots \\ x_{3} = \rho \cos \vartheta_{N-1} \cos \vartheta_{N-2} \cos \vartheta_{N-1} \dots \cos \vartheta_{3} \sin \vartheta_{2} \\ x_{2} = \rho \cos \vartheta_{N-1} \cos \vartheta_{N-2} \dots \cos \vartheta_{3} \cos \vartheta_{2} \sin \vartheta_{1} \\ x_{1} = \rho \cos \vartheta_{N-1} \cos \vartheta_{N-2} \dots \cos \vartheta_{3} \cos \vartheta_{2} \cos \vartheta_{1} \end{cases}$

i- Si mostri che Φ è surgettiva da $\overline{\Omega}$ su \mathbf{R}^N .

- ii- Si mostri che Φ è iniettiva da $[0, \infty[\times(-\pi, \pi] \times (-\frac{\pi}{2}, \frac{\pi}{2})^{N-2}$ (ovvero dato \mathbf{x} si ha che ϑ_h è individuato univocamente se $\vartheta_{h+1}, \dots \vartheta_{N-1} \neq \pm \frac{\pi}{2}$), e se ne determini l'immagine, e la misura N-dimensionale del suo complementare.
- iii- Si provi che le derivate parziali di Φ sono tra loro ortogonali.
- iv- Si calcoli la matrice Jacobiana di Φ verificando che

$$\det J\Phi(\rho,\vartheta_1,\ldots,\vartheta_{N-2},\vartheta_{N-1}) = \rho^{N-1}(\cos\vartheta_{N-1}1)^{N-2}(\cos\vartheta_{N-2})^{N-3}\cdot\ldots\cdot(\cos\vartheta_3)^2\cdot(\cos\vartheta_2).$$

•v- Posto $B_N(R)=\{\mathbf{x}\in\mathbf{R}^N:|\mathbf{x}|_N\leq R\},$ si ricavi la formula

$$m_N(B_N(R)) = \frac{2^{\left[\frac{N+1}{2}\right]}}{N!!} \pi^{\left[\frac{N}{2}\right]} R^N = \begin{cases} \frac{1}{M!} \pi^M R^{2M} & N = 2M\\ 2\frac{M!}{(2M+1)!} 4^M \pi^M R^{2M+1} & N = 2M+1 \end{cases},$$

ove [t] denota la parte intera del numero reale t e k!! è il prodotto di tutti i naturali fra 1 e k che hanno la stessa parità di k (convenendo che 0!! = 1).

Funzioni radiali: sia $f(x,y,z)=g(r), r=\sqrt{x^2+y^2+z^2}$, integrabile o non negativa e misurabile, considerando il cambiamento di coordnate sferiche $\Phi(r,\phi,\theta)=r(\cos\theta\cos\phi,\cos\theta\sin\phi,\sin\theta)$, iniettivo su $\Omega=A=(0;+\infty)\times(-\pi;\pi)\times\left(-\frac{\pi}{2};\frac{\pi}{2}\right), \Phi(\overline{\Omega})=\mathbf{R}^3$, per $4.2\sin\ln\int\limits_{\mathbf{R}^3}f(x,y,z)\,dxdydz=\int\limits_{\mathbf{R}^3}^{+\infty}\int\limits_{-\pi}^{\pi}\int\limits_{-\pi}^{\frac{\pi}{2}}g(r)r^2\cos\theta\,d\theta\,d\phi\,dr=4\pi\int\limits_{0}^{+\infty}\int\limits_{0}^{\frac{\pi}{2}}g(r)r^2\cos\theta\,d\theta\,dr=4\pi\int\limits_{0}^{+\infty}g(r)r^2\,dr$.

Guldino-Pappo, solidi di rotazione: Guldino-Pappo 1.0 - si consideri $x = \gamma(z)$, con γ misurabile non negativa, e D_{α} il sottoinsieme di \mathbf{R}^3 ottenuto facendo ruotare il sottografico positivo di γ , sottoinsieme G del piano y = 0, attorno all'asse delle z (definito da x = y = 0, e contenente il dominio della funzione) di una angolo $\alpha \in [0; 2\pi]$, ortogonalmente all'asse:

$$D_{\alpha} = \{(x, y, z) : \sqrt{x^2 + y^2} \le \gamma(z), \ x = \sqrt{x^2 + y^2} \cos \phi, \ y = \sqrt{x^2 + y^2} \sin \phi \cos \phi \in [0; \alpha] \}.$$

Considerando il cambiamento di coordiante cilindriche $\Phi(r, \phi, z)$ iniettivo su $\Omega = A = (0; +\infty) \times (0; \alpha) \times \mathbf{R}$, $E = E_{\alpha} = \{(r, \phi, z) : r \leq \gamma(z), 0 \leq \phi \leq \alpha\}$, $\Phi(E) = D_{\alpha}$, usando 4.1 e i teoremi di Tonelli, si ha:

$$\operatorname{vol}(D_{\alpha}) = m_3(E) = \int_{\Omega \cap E} |\det J\Phi(r, \phi, z)| \, dr \, d\phi \, dz = \int_0^{\alpha} \int_{-\infty}^{+\infty} \int_0^{\gamma(z)} r \, dr \, dz \, d\phi = \frac{\alpha}{2} \int_{-\infty}^{+\infty} \gamma^2(z) \, dz.$$

Si noti che se la funzione γ fosse di segno variabile il volume del solido di rotazione dell'intragrafico tra $x = \gamma(z)$ e x = 0 sarebbe uguale a quello di pari rotazione del sottografico positivo di $|\gamma|$.

- - Nel caso del solido D_{α} di rotazione, attorno allo stesso asse, per un angolo $\alpha \in [0; 2\pi]$, dell'intragrafico $G = \{(z, x) : \beta(z) \leq x \leq \gamma(z)\}$, tra due funzioni misurabili non negative $0 \leq \beta(z) \leq \gamma(z)$, il volume sarà la differenza dei volumi:

vol
$$(D_{\alpha}) = \frac{\alpha}{2} \int_{\mathbf{R}} (\gamma^{2}(z) - \beta^{2}(z)) dz.$$

Si noti che se non fosse $\beta \leq \gamma$, l'insieme $\{(z,x): \beta(z) \leq x \leq \gamma(z)\}$ non sarebbe l'intragrafico.

Esercizio: volume del toro - per $R>\rho>0$, si calcoli il volume del solido ottenuto facendo ruotare ortogonalmente attorno all'asse z per un angolo giro, il cerchio nel piano y=0 definito da y=0, $(x-R)^2+z^2\leq \rho^2$. Tale cerchio è la zona tra i grafici delle funzioni $\beta(z)=R-\sqrt{\rho^2-z^2}\leq \gamma(z)=R+\sqrt{\rho^2-z^2}, \ |z|\leq \rho.$

Guldino-Pappo 1.1 - nel piano delle (x,z), definito da y=0, si consideri un qualsiasi insieme misurabile G contenuto nel semipiano definito da $x\geq 0$. Sia D_{α} il dominio in \mathbf{R}^3 ottenuto facendo ruotare G attorno all'asse delle z (x=y=0) di una angolo $\alpha\in[0;2\pi]$, ortogonalmente all'asse. Come sopra con il cambiamento di coordinate cilindriche Φ su $E=E_{\alpha}=\{(r,\phi,z): (r,z)\in G,\ 0\leq\phi\leq\alpha\},\ \Phi(E)=D_{\alpha}$ si ha integrando per fette (r,z):

$$\operatorname{vol}D_{\alpha} = m_{3}(\Phi(E)) = \int_{E} |\det J\Phi(r, \phi, z)| \, dr d\phi dz = \int_{0}^{\alpha} \left(\int_{E_{\phi}} r \, dr \, dz \right) d\phi = \int_{0}^{\alpha} \left(\int_{G} r \, dr \, dz \right) d\phi =$$

$$= \alpha \int_{G} r \, dr \, dz.$$

- - Interpretazione geometrica: tenendo presente che il baricentro di una figura B piana (misurabile), di area non nulla, ha coordinate $(b_1(B), b_2(B)) = \frac{1}{\text{area }(B)} \int_B (x, z) \, dx \, dz$, il baricentro

di G avrà prima coordinata uguale a $\frac{1}{\text{area }(G)}\int\limits_{G}x\,dx\,dz$. Quindi:

 $\operatorname{vol} D_{\alpha} = \alpha \cdot \operatorname{area} (G) \cdot \operatorname{coordinata}$ ortogonale all'asse di rotazione del baricentro di G

 $= \alpha \cdot \text{ area } (G) \cdot \text{distanza dall'asse di rotazione del baricentro di } G =$

 $= \mbox{ area } (G) \cdot \mbox{lunghezza arco di circonferenza percorso dal baricentro di G.}$

Guldino-Pappo 1.2 - si tratta di calcolare il volume del solido di rotazione ortogonale, per un angolo $\alpha \in [0; 2\pi]$, dell'intragrafico tra due funzioni reali di una variabile, non attorno all'asse del dominio, ma attorno all'asse del codominio.

Date le funzioni $\beta \leq \gamma$ di dominio l'intervallo $J \subseteq [0; +\infty)$, sia G l'intragrafico nel piano (x, z)

definito da $\beta(x) \leq z \leq \gamma(x)$, $x \in J$. Sia quindi D_{α} il solido di rotazione attorno all'asse delle z, definito da x = y = 0 ed identificato con il codominio delle funzioni:

$$D_{\alpha} = \{(x, y, z) : \beta(\sqrt{x^2 + y^2}) \le z \le \gamma(\sqrt{x^2 + y^2}), \ \sqrt{x^2 + y^2} \in J, \\ x = \sqrt{x^2 + y^2} \cos \phi, \ y = \sqrt{x^2 + y^2} \sin \phi \ \text{con} \ \phi \in [0; \alpha] \}.$$

Essendo area $(G) = \int_{\mathcal{X}} (\gamma(x) - \beta(x)) dx$, ed il baricentro di G di coordinate

$$\frac{1}{\int_{J} (\gamma(x) - \beta(x)) dx} \left(\int_{J} \int_{\beta(x)}^{\gamma(x)} x dz dx, \int_{J} \int_{\beta(x)}^{\gamma(x)} z dz dx \right) =$$

$$= \frac{1}{\int_{J} (\gamma(x) - \beta(x)) dx} \left(\int_{J} (\gamma(x) - \beta(x)) x dx, \int_{J} \frac{\gamma^{2}(x) - \beta^{2}(x)}{2} dx \right), \text{ si ha}$$

$$\text{vol } (D_{\alpha}) = \alpha \cdot \int_{J} (\gamma(x) - \beta(x)) x dx.$$

Integrali dipendenti da parametri per domini variabili. - In FT 9, 13, 21 si sono discusse le funzioni definite da integrali dipendenti da parametri, e, in una variabile, FT 9, 13, la dipendenza da parametri degli estremi del segmento di integrazione.

- Per gli integrali in più variabili un $primo\ passo$ in questa direzione si può fare se la dipendenza del dominio di integrazione dal parametro è dovuta al fatto che esso è l'immagine di un dominio da esso indipendente mediante un $cambiamento\ di\ coordinate\ ammissibile\ dipendente\ dal\ parametro.$ In tal caso la formula di cambiamento di variabili permette di $riportare\ la\ dipendenza\ dal\ dominio\ di\ integrazione\ all'integranda$. Per semplicità si considerano cambiamenti di coordinate che siano diffeomorfismi C^1 su chiusure di aperti con frontiera di misura nulla:

$$\Omega_t = \Phi_t(\Omega), \ \Phi_t(x) = F(t, x), \ \Omega \subseteq \mathbf{R}^m \text{ aperto con } m_m(\partial \Omega) = 0,$$

 $(F_1, \dots, F_m) = F : I \times \mathbf{R}^m \to \mathbf{R}^m, \text{ continua in } (t, x), \text{ e per ogni } t \in I,$

 $x \mapsto F(t,x) = \Phi_t(x)$ sia $C^1(\mathbf{R}^m)$ iniettiva con matrice jacobiana $J_x F(t,x) = J\Phi_t(x)$ invertibile:

$$\mathcal{F}(t) =: \int_{\Omega_t} f(y) \, dy = \int_{\Omega} f(\Phi_t(x)) |\det J\Phi_t(x)| \, dx.$$

- Per lo studio di \mathcal{F} , quando il parametro t vari in $I \subseteq \mathbf{R}^M$, può esser utile derivare l'integrale parametrico, e.g. per trovare i punti stazionari in vista di un problema di ottimizzazione. Si ricorre ai teoremi di derivazione di integrali parametrici: fattore dell'integranda $f(\Phi_t(x)) = f(F(t,x))$ si deriva grazie alla regola della catena. Il fattore $|\det J\Phi_t(x)| = |\det J_x F(t,x)|$ si deriva usando la formula per il differenziale del determinante, cfr. FT 12. Nelle dovute ipotesi su f ed F per applicare i criteri di derivabilità (per esempio, ferme le assunzioni fatte su F,

$$I \subseteq \mathbf{R}^{k} \text{ aperto, per ogni } x \in \mathbf{R}^{m} \text{ anche } t \mapsto F(t, x) \text{ sia } C^{1}(I)) : \quad \frac{\partial \mathcal{F}}{\partial t_{h}}(t) =$$

$$= \int_{\Omega} \left[\left\langle \nabla f(\Phi_{t}(x)) \cdot \frac{\partial \Phi_{t}}{\partial t_{h}}(x) \right\rangle + f(\Phi_{t}(x)) \cdot tr \left((J\Phi_{t}(x))^{-1} \frac{\partial J\Phi_{t}}{\partial t_{h}}(x) \right) \right] |\det J\Phi_{t}(x)| \, dx =$$

nelle opportune ipotesi (vedi sotto) si scambia l'ordine di derivazione tra t e le x_i

$$= \int_{\Omega} \left[\left\langle \nabla f(\Phi_{t}(x)) \cdot \frac{\partial \Phi_{t}}{\partial t_{h}}(x) \right\rangle + f(\Phi_{t}(x)) \cdot tr \left((J\Phi_{t}(x))^{-1} J \left[\frac{\partial \Phi_{t}}{\partial t_{h}} \right](x) \right) \right] |\det J\Phi_{t}(x)| \, dx =$$

$$= \int_{\Omega_{t}} \left[\left\langle \nabla f(y) \cdot \frac{\partial \Phi_{t}}{\partial t_{h}} (\Phi^{-1}(y)) \right\rangle + f(y) \cdot tr \left((J\Phi_{t}^{-1}(y)) J \left[\frac{\partial \Phi_{t}}{\partial t_{h}} \right] (\Phi^{-1}(y)) \right) \right] \, dy =$$

$$= \int_{\Omega_{t}} \left[\left\langle \nabla f(y) \cdot \frac{\partial \Phi_{t}}{\partial t_{h}} (\Phi^{-1}(y)) \right\rangle + f(y) \cdot tr \left(J \left[\frac{\partial \Phi_{t}}{\partial t_{h}} \right] (\Phi^{-1}(y)) J \Phi_{t}^{-1}(y) \right) \right] \, dy =$$

$$= \int_{\Omega_t} \left[\left\langle \nabla f(y) \cdot \frac{\partial \Phi_t}{\partial t_h} (\Phi^{-1}(y)) \right\rangle + f(y) \cdot tr \left(J \left[\frac{\partial \Phi_t}{\partial t_h} (\Phi^{-1}(y)) \right] \right) \right] dy, \text{ quindi}$$

$$\frac{\partial \mathcal{F}}{\partial t_h} (t) = \int_{\Omega_t} \left[\left\langle \nabla f(y) \cdot \frac{\partial \Phi_t}{\partial t_h} (\Phi^{-1}(y)) \right\rangle + f(y) \cdot \text{div} \left(\frac{\partial \Phi_t}{\partial t_h} (\Phi_t^{-1}(y)) \right) \right] dy$$

Per scambiare l'ordine di integrazione, si assume o $F \in C^2(I \times \mathbf{R}^m)$, o, ferme restando le altre assunzioni, permettendo meno regolarità nel parametro t, solo (cfr. primo criterio di Schwraz FT 12):

$$\frac{\partial \Phi_t(x)}{\partial t} = \frac{\partial F}{\partial t}(t, x), J\Phi_t(x) = J_x F(t, x) \text{ siano } C(I \times \mathbf{R}^M), \text{ e quest'ultima } C^1(I), \text{ con derivata}$$
 in t anch'essa continua in (t, x) : $\frac{\partial^2 F}{\partial t \partial x_i}(t, x) \in C(I \times \mathbf{R}^M).$

Perturbazioni dell'identità: (cfr. differenziale del determinante in FT 12) particolarmente significativo è il caso particolare in cui $I \subseteq \mathbf{R}$, è un intervallo e

$$\Phi_t \sim Id_{\mathbf{R}^m}$$
, quando $t \sim t_0 \in I$.

Per esempio, ferme le assunzioni fatte su F, I = (-r; r), per ogni $x \in \mathbf{R}^m$ anche $t \mapsto F(t, x)$ sia $C^1(I)$, e $F(0, x) = \Phi_0(x) = x$, per cui:

$$F(0,x) = \Phi_0(x) = x, \text{ quindi } J\Phi_0(x) = J_x F(0,x) = Id_{m \times m}.$$
 Posto $(v_1(x), \dots, v_m(x)) = v(x) =: \frac{\partial F}{\partial t}(0,x), \text{ sviluppando in } t: \qquad \Phi_t(x) = x + tv(x) + o_x(t).$

$$\frac{d\mathcal{F}}{dt}(0) = \int_{\Omega} \left[\frac{\partial f}{\partial v(x)}(x) + f(x) \cdot \operatorname{div} v(x) \right] dx. \quad \text{Se } f \equiv 1: \frac{d}{dt} \left(m_N(\Omega_t) \right)_{t=0} = \int_{\Omega} \operatorname{div} v(x) dx .$$

Osservazione: il teorema della divergenza, cfr. FT 24, permette ulteriori sviluppi di tali formule.

III: integrazione non orientata su superficie

- Per mappe $\Phi: E \subseteq \mathbf{R}^M \to \mathbf{R}^m$, anche con $M \neq m$, vi sono formule analoghe che estendono quelle dell'area e di cambiamento di variabile (con molteplicità). In primo luogo per $m \geq M$ (formule dell'area) e quindi per $m \leq M$ (formule d coarea). Già nel primo caso si richiede una nozione di misura M-dimensionale "assoluta" in \mathbf{R}^m (indipendente da come si presenta il sottoinsieme di \mathbf{R}^m da misurare: se come luogo di zeri o sostegno di una parametrizzazione), che non conviene qui introdurre.
- Piuttosto la validità di tali proprietà permette di usare tali risultati per dare, per mezzo delle parametrizzazioni, la definizione di misura M-dimensionale di sostegni di M-superficie parametrica, e quindi di M-sottovarietà, di \mathbf{R}^m . Si associa a queste definizioni una nozione di integrale non orientato su sostegni di superfice parametrica che estende quello per i cammini.

III.1: il caso "finito".

Come già osservato, trattando delle formule di Cauchy-Binet- Pitagora nel secondo paragrafo di FT 11, si è mostrato che, a ragione, $\sqrt{\det^t LL}$ $(L=(L^1|\dots|L^M)$, matrice $m\times M$, $m\geq M$, di rango massimo M) può essere interpretato geometricamente come volume M-dimensionale del parellelpipedo generato dalle colonne di L. Si dà quindi la seguente definizione:

Parallelepipedi M-dimensionali in \mathbf{R}^m : siano $L^1, \dots, L^M \in \mathbf{R}^m$, $m \geq M$, linearmente indipendenti, $L = (L^1 | \dots | L^M)$, $p \in \mathbf{R}^m$.

- Si definisce il volume o area M-dimensionale $s_M(P) = \sqrt{\det^t LL}$, del parallelepipedo M-dimensionale in \mathbf{R}^m generato dagli spigoli L^1, \ldots, L^M , e di vertici $p, p + L^1, \ldots, p + L^M, p + L^1 + L^2, p + L^1 + L^3, \ldots, p + L^1 + \cdots + L^M$: $P = p + P(L) = p + L[0; 1]^M = \{p + s_1L^1 + \cdots + s_ML^M : 0 \le s_1, \ldots, s_M \le 1\}$.
- Data $f: P(L) \to \overline{\mathbf{R}}$ per cui $x \mapsto f(p+Lx)$ sia misurabile, non negativa o integrabile, si definisce: $\int\limits_P f ds_M = \sqrt{\det^t\! L L} \int\limits_{[0:1]^M} f(p+Lx) \, dx, \quad ds_M = \sqrt{\det^t\! L L} \, dx.$

- Nel caso $L^1, \ldots L^M$ siano dipendenti il parallelogramma sarà degenere (di dimensione minore di M), e le stesse fomule saranno corrette annullandosi det ${}^{t}LL$.

Parallelogrammi bidimensionali in R³: in questo caso (cfr. FT 11) l'area del parallelogramma P, eventualmente degenere, di vertici $p, p + \vec{A}, p + \vec{B}, p + \vec{A} + \vec{B}$ nello spazio \mathbb{R}^3 ,

$$s_2(P) = \sqrt{\det^t(A|B)(AB)} = |A \times B|_{\mathbf{R}^3} =$$

= $\sqrt{\text{somma quadrati aree proiezioni ortogonali sui piani coordinati.}}$

Osservazione: - l'invarianza per traslazione è contenuta nella definizione.

- Per una trasformazione lineare in \mathbf{R}^m associata alla matrice S, che trasforma parallelepipedi in parellelpipedi, si ha, comprendendo i casi degeneri, $s_M(SP(L)) = \sqrt{\det^t L^t SSL}$.
- Da ciò segue *l'invarianza* rispetto alle trasformazioni associate a matrici S ortogonali. rifles $sioni\ e\ rotazioni.$
- Rispetto ad omotetie di fattore $\lambda \in \mathbf{R}, S = \lambda Id_{m \times m},$ si avrà $s_M(SP) = |\lambda|^M s_M(P).$

Unioni numerabili quasi disgiunte, poliedri: - le definizoni si estendono mediante serie ad unioni numerabili di M-parallelepipedi con interni relativi alla loro giacitura disgiunti.

- In particolare a poliedri M-dimensionali in \mathbf{R}^m .

III.2: il caso "infinitesimo".

Le idee intuitive sono analoghe a quelle qui già esposte riguardo ai volume di immagini, solo che per la parte finita ci si basa su quanto appena definito e si introducono minime restrizioni. Se $\Phi: E \subset \mathbf{R}^M \to \mathbf{R}^m$, e $p \in E$:

1) si suddivide il codominio (sostegno di una superficie M-dimensionale in \mathbb{R}^m) con i trasformati $\Phi(p+Q_x)$ dei traslati in p degli ipercubi coordinati Q_x di spigoli infinitesimi $he_i^{\mathbf{R}^M} \sim dx_i e_i^{\mathbf{R}^M}$; 2) - le presunte "aree M-dimensionali" dei $\Phi(p+Q_x)$ vengono a loro volta approssimate dalle aree M-dimensionali, or ora definite, degli M-parallelepipedi tangenti, con vertice in $\Phi(p)$ e spigoli generatori $\frac{\partial \Phi}{\partial x_1}(p)h, \dots, \frac{\partial \Phi}{\partial x_M}(p)h$: $\frac{\partial \Phi}{\partial x_i}(p)dx_i = J\Phi(p)dx_ie_i^{\mathbf{R}^M} \in \mathbf{R}^m$,

ovvero i traslati in $\Phi(p)$ dei trasformați di Q_x mediante lo jacobiano in p di Φ :

$$J\Phi(p)Q_x = J\Phi(p) \begin{pmatrix} dx_1 & \dots & 0 \\ & \ddots & \\ 0 & \dots & dx_M \end{pmatrix} [0;1]^M$$
. Per definizone le aree M -dimensionali sono

$$J\Phi(p)Q_x = J\Phi(p) \begin{pmatrix} dx_1 & \dots & 0 \\ & \ddots & \\ 0 & \dots & dx_M \end{pmatrix} [0;1]^M. \text{ Per definizone le aree } M\text{-dimensionali sono}$$

$$\sqrt{\det \begin{bmatrix} dx_1 & \dots & 0 \\ & \ddots & \\ 0 & \dots & dx_M \end{pmatrix}} {}^t J\Phi(p) J\Phi(p) \begin{pmatrix} dx_1 & \dots & 0 \\ & \ddots & \\ 0 & \dots & dx_M \end{pmatrix} = \sqrt{\det^t J\Phi(p) J\Phi(p)} |dx_1 \dots dx_M|.$$

Analogamente al caso finito si otterrebbe:

$$ds_M \sim \sqrt{\det^t J\Phi(p)J\Phi(p)}dx.$$

M-jacobiano se $\Phi: E \subseteq \mathbf{R}^M \to \mathbf{R}^m$, è differenziabile in p, se $M \leq m$, $\sqrt{\det^t J\Phi(p)J\Phi(p)}$ si dice M jacobiano e si indica con $|J|_M \Phi(p)$.

Parametrizzazioni ammissibili per l'integrazione non orientata. Si dirà parametrizzazione ammissibile per l'integrazione non orientata M-dimensionale in \mathbf{R}^m una $\Phi:\overline{\Omega}\subseteq$ $\mathbf{R}^M \to \mathbf{R}^m$, localmente Lipschitziana, Ω aperto, $C^1(A)$, $A \subseteq \Omega$ aperto per cui $m_M(\overline{\Omega} \setminus A) = 0$, ed iniettiva su $A \setminus C_{\Phi}$.

Area ed integrali non orientati di superficie: sia $\Phi:\overline{\Omega}\subseteq\mathbf{R}^M\to\mathbf{R}^m$ ammissibile

- Area: per ogni F per cui $\Phi^{-1}(F) \setminus C_{\Phi}$ sia misurabile, per ogni E per cui $E \cap \overline{\Omega} \setminus C_{\Phi}$ sia misurabile, si definisce: $s_M(F) =: \int_{A \cap \Phi^{-1}(F)} |J|_M \Phi(x) dx$, $s_M(\Phi(E)) = \int_{A \cap E} |J|_M \Phi(x) dx$.

- Integrale non orientato: per ogni f definita su $\Phi(\overline{\Omega})$, per cui $f \circ \Phi|J|_M \Phi|$ sia misurabile, o non negativa o anche integrabile, si definisce $\int_{\Phi} f \, ds_M =: \int_{\Phi(\overline{\Omega})} f \, ds_M =: \int_A f(\Phi(x))|J|_M \Phi(x) \, dx$.
- Molteplicità: ferme le altre assunzioni, senza ipotesi di iniettività su Φ , per ogni $f: \Phi(\overline{\Omega}) \to \overline{\mathbf{R}}$, con $f \circ \Phi|J|_M \Phi|$ misurabile, o non negativa o anche integrabile, si ottiene

$$\int_{\Phi} f \# (\Phi^{-1}) ds_M = \int_{\Phi(\overline{\Omega})} f(y) \# (\Phi^{-1}\{y\}) ds_M(y) = \int_A f(\Phi(x)) |J|_M \Phi(x) dx,$$

Caso bidimensionale in \mathbb{R}^3 . Nel caso bidimensionale in \mathbb{R}^3 , queste nozioni e notazioni si possono specializzare. Si usa la seguente notazione $(x_1, x_2) = (u, v)$, $\Phi = (\Phi_1, \Phi_2, \Phi_3) = (x(u, v), y(u, v), z(u, v))$.

$$ds_{2} = \sqrt{\det^{t} J \Phi J \Phi} du dv = \sqrt{\det \left(\begin{array}{ccc} \langle \partial_{u} \Phi \cdot \partial_{u} \Phi \rangle_{\mathbf{R}^{3}} & \langle \partial_{u} \Phi \cdot \partial_{v} \Phi \rangle_{\mathbf{R}^{3}} \\ \langle \partial_{v} \Phi \cdot \partial_{u} \Phi \rangle_{\mathbf{R}^{3}} & \langle \partial_{v} \Phi \cdot \partial_{v} \Phi \rangle_{\mathbf{R}^{3}} \end{array} \right)} du dv = \text{Cauchy-Binet}$$

$$= \sqrt{\det \left(\begin{array}{ccc} \partial_{u} \Phi_{1} & \partial_{v} \Phi_{1} \\ \partial_{u} \Phi_{2} & \partial_{v} \Phi_{2} \end{array} \right)^{2} + \det \left(\begin{array}{ccc} \partial_{u} \Phi_{2} & \partial_{v} \Phi_{2} \\ \partial_{u} \Phi_{3} & \partial_{v} \Phi_{3} \end{array} \right)^{2} + \det \left(\begin{array}{ccc} \partial_{u} \Phi_{3} & \partial_{v} \Phi_{3} \\ \partial_{u} \Phi_{1} & \partial_{v} \Phi_{1} \end{array} \right)^{2}} du dv =$$

$$= \left| \frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v} \right|_{\mathbf{R}^{3}} du dv.$$

Considerando formalmente la regola della catena usando la notazione $\Phi = (\Phi_1, \Phi_2, \Phi_3) = (x(u,v),y(u,v),z(u,v))$, si ottiene $\begin{cases} dx = \partial_u \Phi_1 du + \partial_v \Phi_1 dv \\ dy = \partial_u \Phi_2 du + \partial_v \Phi_2 dv \end{cases}$, utilizzando la terza uguaglianza $dx = \partial_u \Phi_3 du + \partial_v \Phi_3 dv$

$$ds_2^2 = |dx \times dy|^2 + |dy \times dz|^2 + |dz \times dx|^2, \quad |J|_2 \Phi = |\partial_u \Phi \times \partial_v \Phi|_{\mathbf{R}^3}.$$

Caso di grafici di funzioni reali: se $\Phi(x)=(x,\phi(x)), \ \phi: \overline{\Omega}\subseteq \mathbf{R}^{m-1}\to \mathbf{R}, \ M=m-1,$ è la funzione che parametrizza il grafico di ϕ , si ha $J\Phi=\begin{pmatrix}Id_{(m-1)\times(m-1)}\\J\phi\end{pmatrix}=$

$$\begin{pmatrix} Id_{(m-1)\times(m-1)} \\ \partial_{x_1}\phi \dots \partial_{x_{m-1}}\phi \end{pmatrix}, \text{ pertanto } \det^t J\Phi J\Phi = \det \begin{pmatrix} Id_{(m-1)\times(m-1)} & \vdots \\ \partial_{x_{m-1}}\phi & \vdots \\ \partial_{x_{m-1}}\phi \end{pmatrix} \begin{pmatrix} Id_{(m-1)\times(m-1)} \\ \partial_{x_1}\phi \dots \partial_{x_{m-1}}\phi \end{pmatrix} = \det \begin{pmatrix} Id_{(m-1)\times(m-1)} & \vdots \\ \partial_{x_{m-1}}\phi & \vdots \\ \partial_{x_{m-1}}\phi & \vdots \end{pmatrix}$$

Cauchy- Binet

$$= \left[\det \left(\begin{array}{ccc} 0_{(m-2)\times 1} & e_1^{\mathbf{R}^{m-2}} \dots & e_{m-2}^{\mathbf{R}^{m-2}} \\ \partial_{x_1} \phi & \partial_{x_2} \phi \dots & \partial_{x_{m-1}} \phi \end{array} \right) \right]^2 + \dots + \left[\det \left(\begin{array}{ccc} e_1^{\mathbf{R}^{m-2}} & \dots & e_{m-2}^{\mathbf{R}^{m-2}} & 0_{(m-2)\times 1} \\ \partial_{x_1} \phi & \dots & \partial_{x_{m-2}} \phi & \partial_{x_{m-1}} \phi \end{array} \right) \right]^2 + 1 = 0$$

= sviluppando per colonne $|\nabla \phi|_{\mathbf{R}^{m-1}}^2 + 1$. Quindi $ds_{m-1} = \sqrt{1 + |\nabla \phi|_{\mathbf{R}^{m-1}}^2} dx$.

Luoghi di zeri: data $F: \mathbf{R}^3 \to \mathbf{R}$, C^1 , per cui $\frac{\partial F}{\partial z} \neq 0$, su $S = \{(x, y, z) : F(x, y, x) = 0\}$.

Per il teorema delle funzioni implicite S è una sottovarietà bidimensionale di \mathbb{R}^3 , in quanto unione di grafici disgiunti di funzioni nelle variabili (x, y). Se ϕ è una tali funzioni

$$\partial_x \phi(x,y) = -\frac{\partial_x F(x,y,\phi)}{\partial_z F(x,y,\phi)}, \ \partial_y \phi(x,y) = -\frac{\partial_y F(x,y,\phi)}{\partial_z F(x,y,\phi)}.$$

Quindi tale $\operatorname{Graf}\phi$, componente di S, è il sostegno della superficie parametrica regolare semplice $\Phi(x,y)=(x,y,\phi(x,y)),\,(x,y)\in\operatorname{Dom}\phi,\,\operatorname{per}\operatorname{cui}$

$$ds_2 = \sqrt{1 + |\nabla \phi(x, y)|^2} \, dx \, dy = \frac{|\nabla F(x, y, \phi)|_{\mathbf{R}^3}}{|\partial_z F(x, y, \phi)|} \, dx \, dy, \ (x, y) \in \text{Dom}\phi.$$

Osservazione: quindi la classe delle parametrizzazioni ammissibili per l'integrazione orientata è piuttosto meno restrittiva di quelle per superficie parametrica con qualche grado di regolarità (in particolare la continuità dell' inversa).

Non essendoci nel caso non lineare una parametrizzazione standard, come per i parallelepipedi, dal punto di vista geometrico è necessario mostrare che questa nozione di area è indipendente dalla parametrizazzione, ma dipende nel caso di essenziale iniettività solo dal sostegno.

Indipendenza dalla parametrizzazione: siano $\Phi : \overline{D} \subseteq \mathbf{R}^M \to \mathbf{R}^m$ e $\Psi : \overline{\Delta} \subseteq \mathbf{R}^M \to \mathbf{R}^m$, $M \leq m$, parametrizzazioni ammissibili (essenzialmente iniettive).

Equivalenza forte: esse si dicono equivalenti (in senso forte) se vi è $\Gamma: \overline{\Delta} \to \overline{D}$, diffeomorfismo C^1 , invertibile con inversa C^1 , per cui $\Psi = \Phi_o \Gamma$, $\Phi = \Psi_o \Gamma^{-1}$.

 $\int f \, ds_M = \int f \, ds_M.$ Se Φ e Ψ sono equivalenti allora

Dimostrazione: cfr. ultimo paragrafo. Per
$$m=3, \ M=2$$
 si dà un calcolo alternativo:
$$\Psi=\Psi(p,q), \ \Phi=\Phi(u,v), \ \Gamma=(\Gamma_1,\Gamma_2)=(u,v): \begin{cases} \partial_p\Psi=\partial_u\Phi\partial_p\Gamma_1+\partial_v\Phi\partial_p\Gamma_2\\ \partial_q\Psi=\partial_u\Phi\partial_q\Gamma_1+\partial_v\Phi\partial_q\Gamma_2 \end{cases},$$

 $\partial_p \Psi \times \partial_q \Psi = \partial_u \Phi \times \partial_v \Phi \left[\partial_p \Gamma_1 \partial_q \Gamma_2 - \partial_p \Gamma_2 \partial_q \Gamma_1 \right] = \partial_u \Phi \times \partial_v \Phi \det J\Gamma$, quindi

$$\begin{split} \int_{\Psi} f ds_2 &= \int_{\Delta} f(\Psi(p,q)) |\partial_p \Psi(p,q) \times \partial_q \Psi(p,q)|_{\mathbf{R}^3} dp dq = \\ &= \int_{\Delta} f(\Phi(\Gamma(p,q))) |\partial_u \Phi(\Gamma(p,q)) \times \partial_v \Phi(\Gamma(p,q))| \left| \det J\Gamma(p,q) | dp dq = \right| \\ &= \int_{D} f(\Phi(u,v)) |\partial_u \Phi(u,v) \times \partial_v \Phi(u,v)| \, du dv = \int_{\Phi} f \, ds_2. \end{split}$$

Osservazione: - analogamente, senza iniettività, si avrà l'eguaglianza degli integrali con molteplicità.

- Se Γ è solo un cambiamento di coordinate ammissibile si ottengono analoghi risulati.
- \bullet Esercizio: studiare la relazione tra gli integrali per due parametrizzazioni ammissibili Ψ e Φ con $\Psi = \Phi_0 \Gamma$, ma Γ una trasformazione ammissibile senza alcuna assunzione di iniettività.

Osservazione: le proprietà di additività, linearità, monotonia, passaggio al limite, degli integrali si trasferiscono direttamente agli integrali non orientati per una superficie ammissibile.

È quindi ben posta la seguente definizione:

Integrali non orientati su sottovarietà: assumendo che una Σ sottovarietà M-dimensionale C^K , $K \geq 1$ di \mathbf{R}^m , sia unione numerabile di sostegni S_n , $n \in \mathbf{N}$ di carte locali, per cui $s_M(S_n \cap \overline{S_m}) = 0$, $n \neq m$ si pone, per integrande f per cui gli integrali siano definiti, e che siano funzioni o di segno costante, o per cui $\sum \int_C f^+ < +\infty$, o $\sum \int_C f^- < +\infty$:

$$\int_{\Sigma} f \, ds_M = \sum_{n=0}^{\infty} \int_{S_n} f \, ds_M.$$

Area sfera: $\Phi : \mathbf{R}^2 \to \mathbf{R}^3$, $\Phi(\phi, \theta) = (R\cos\theta\cos\phi, R\cos\theta\sin\phi, R\sin\theta)$, $\overline{\Omega} = [-\pi; \pi] \times \left[-\frac{\pi}{2}; \frac{\pi}{2} \right], \quad A = \Omega = (-\pi; \pi) \times \left(-\frac{\pi}{2}; \frac{\pi}{2} \right), \quad \Phi(\overline{\Omega}) = \{(x, y, z) : x^2 + y^2 + z^2 = R^2\},$

$$J\Phi(\phi,\theta) = R \begin{pmatrix} -\cos\theta\sin\phi & -\sin\theta\cos\phi \\ \cos\theta\cos\phi & -\sin\theta\sin\phi \\ 0 & \cos\theta \end{pmatrix}, |J|_2\Phi(\phi,\theta) = R^2\cos\theta, C_\Phi \cap A = \emptyset:$$

$$s_2\left(\Phi\left(\overline{\Omega}\right)\right) = \int_{\Omega} R^2 \cos\theta \, d\phi \, d\theta = 2\pi R^2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos\theta \, d\theta = 4\pi R^2.$$

Area toro: siano $R > \rho > 0$, $\Phi : \mathbb{R}^2 \to \mathbb{R}^3$, $\overline{\Omega} = [-\pi; \pi] \times [0; 2\pi]$, $A = \Omega = (-\pi; \pi) \times (0; 2\pi)$,

$$\begin{split} &\Phi(\phi,\gamma) = \begin{pmatrix} \cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} \begin{pmatrix} R \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} \rho\cos\gamma \\ 0 \\ \rho\sin\gamma \end{pmatrix} \end{bmatrix} = \begin{pmatrix} R\cos\phi + \rho\cos\gamma\cos\phi \\ R\sin\phi + \rho\cos\gamma\sin\phi \\ \rho\sin\gamma \end{pmatrix}, \\ &\Phi(\overline{\Omega}) = \{(x,y,z) : \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = \rho^2\}, \\ &J\Phi(\phi,\gamma) = \begin{pmatrix} -R\cos\phi - \rho\cos\gamma\sin\phi & -\rho\sin\gamma\cos\phi \\ R\cos\phi + \rho\cos\gamma\cos\phi & -\rho\sin\gamma\sin\phi \\ 0 & \rho\cos\gamma \end{pmatrix}, \\ &J = \{(x,y,z) : \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = \rho^2\}, \\ &J = \{(x,y,z) : \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = \rho^2\}, \\ &J = \{(x,y,z) : \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = \rho^2\}, \\ &J = \{(x,y,z) : \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = \rho^2\}, \\ &J = \{(x,y,z) : \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = \rho^2\}, \\ &J = \{(x,y,z) : \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = \rho^2\}, \\ &J = \{(x,y,z) : \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = \rho^2\}, \\ &J = \{(x,y,z) : \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = \rho^2\}, \\ &J = \{(x,y,z) : \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = \rho^2\}, \\ &J = \{(x,y,z) : \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = \rho^2\}, \\ &J = \{(x,y,z) : \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = \rho^2\}, \\ &J = \{(x,y,z) : \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = \rho^2\}, \\ &J = \{(x,y,z) : \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = \rho^2\}, \\ &J = \{(x,y,z) : \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = \rho^2\}, \\ &J = \{(x,y,z) : \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = \rho^2\}, \\ &J = \{(x,y,z) : \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = \rho^2\}, \\ &J = \{(x,y,z) : \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = \rho^2\}, \\ &J = \{(x,y,z) : \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = \rho^2\}, \\ &J = \{(x,y,z) : \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = \rho^2\}, \\ &J = \{(x,y,z) : \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = \rho^2\}, \\ &J = \{(x,y,z) : \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = \rho^2\}, \\ &J = \{(x,y,z) : \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = \rho^2\}, \\ &J = \{(x,y,z) : \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = \rho^2\}, \\ &J = \{(x,y,z) : \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = \rho^2\}, \\ &J = \{(x,y,z) : \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = \rho^2\}, \\ &J = \{(x,y,z) : \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = \rho^2\}, \\ &J = \{(x,y,z) : \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = \rho^2\}, \\ &J = \{(x,y,z) : \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = \rho^2\}, \\ &J = \{(x,y,z) : \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = \rho^2\}, \\ &J = \{(x,y,z) : \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = \rho^2\}, \\ &J = \{(x,y,z) : \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = \rho^2\}, \\ &J = \{(x,y,z) : \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = \rho^2\}, \\ &J = \{(x,y,z) :$$

Superficie di rotazione: Guldino-Pappo 2.0. Sia $\gamma(t)=(x(t),0,z(t)),\,t\in I$, (per semplicità $x(t)\geq 0$) una curva regolare a tratti, iniettiva al di fuori di un insieme finito (di misura nulla). Usando le coordinate cilindriche, si dà una parametrizzazione della superfice di rotazione Φ , (essenzialmente iniettiva) ottenuta ruotando il sostegno di γ , per piani ortogonali, attorno all'asse delle z di $\alpha \leq 2\pi$ radianti: $(t,\phi) \in I \times [0;\alpha]$

$$\Phi(\phi,t) = (x(t)\cos\phi, x(t)\sin\phi, z(t)) = \begin{pmatrix} \cos\phi & -\sin\phi & 0\\ \sin\phi & \cos\phi & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x(t)\\ 0\\ z(t) \end{pmatrix} = R(\phi)\gamma(t).$$

Essendo
$$J\Phi(t,\phi) = \begin{pmatrix} x'(t)\cos\phi & -x(t)\sin\phi \\ x'(t)\sin\phi & x(t)\cos\phi \\ z'(t) & 0 \end{pmatrix} : |J|_2\Phi(t,\phi) = x(t)\sqrt{(x'(t))^2 + (z'(t))^2}$$

$$ds_2 = x(t)|\gamma'|_{\mathbf{R}^2} dt d\phi = x(t) ds_1 d\phi, \text{ e quindi}$$

$$s_{2}\left(\Phi\left(I\times\left[0;\alpha\right]\right)\right) = \int_{I\times\left[0;\alpha\right]} x(t)\sqrt{(x'(t))^{2} + (z'(t))^{2}}dt\,d\phi = \int_{0}^{\alpha} \left(\int_{\gamma} xds_{1}\right)\,d\phi = \alpha\int_{\gamma} xds_{1},$$

$$\int_{\Phi} f\,ds_{2} = \int_{0}^{\alpha} \left(\int_{\gamma} xf\left(R(\phi)^{t}(x,0,z)\right)\,ds_{1}\right)\,d\phi.$$

Guldino-Pappo 2.1: tenendo presente che il baricentro di una varietà 1-dimensionale V nel piano ha coordinate $(b_1(V), b_2(V)) = \frac{1}{s_1(V)} \int_V (x, z) ds_1$, il baricentro del sostegno di γ , essendo

questa iniettiva al di fuori di una insieme di misura nulla, avrà prima coordinata uguale a $\frac{1}{\ell(\gamma)} \int x \, ds_1$. Quindi l'area di tale superficie di rotazione è data da:

lunghezza dell'arco di circonferenza percorso dal baricentro della curva \cdot lunghezza della curva = $\alpha \cdot distanza del baricentro della curva dall'asse <math>\cdot$ lunghezza della curva

Superficie di cono: sia $\gamma(t)=(x(t),y(x),z(t)),\ t\in I$ curva semplice regolare a tratti. Per semplicità si assume che: non passi per l'origine, e $\gamma\mapsto\frac{\gamma}{|\gamma|}$ sia iniettiva nella sfera unitaria. L'insieme $\{(x,y,z):\ (x,y,z)=r\gamma(t),\ r\in[0;1],\ t\in I\}$ è il sostegno della superficie parametrica $\Phi(r,t)=(rx(t),ry(x),rz(t)),\ (r,t)\in[0;1]\times I$, che per le ipotesi fatte è iniettiva su

$$[0;1] \times I^p$$
. Sia S il suo sostegno. Poichè $J\Phi(r,t) = \begin{pmatrix} x(t) & rx'(t) \\ y(t) & ry'(t) \\ z(t) & rz'(t) \end{pmatrix} = r(\gamma(t)|\gamma'(t)),$

$$|J|_2 \Phi(r,t) = r|\gamma(t) \times \gamma'(t)|_{\mathbf{R}^3}$$
, si ha $ds_2 = r|\gamma(t) \times \gamma'(t)|_{\mathbf{R}^3} dr dt$,

$$s_2\left(S\right) = \int\limits_{[0;1]\times I} r|\gamma(t)\times\gamma'(t)|_{\mathbf{R}^3}\,dr\,dt = \int_0^1 r\left(\int\limits_I |\gamma(t)\times\gamma'(t)|_{\mathbf{R}^3}\,dt\right)dr = \frac{1}{2}\int\limits_I |\gamma(t)\times\gamma'(t)|_{\mathbf{R}^3}\,dt.$$

<u>Esercizio</u>: - che interpretazione dare del risultato? [cfr. formula di Cauchy-Binet, ed interpretazione geometrica del mo dulo del prodotto vettoriale].

- Si consideri una curva semplice piana $\gamma(t)=(x(t),y(t)),\ t\in I$ regolare a tratti, non passante per l'origine, per cui $\gamma\to\frac{\gamma}{|\gamma|_{\mathbf{R}^2}}$ sia iniettiva. Si mostri che l'area del settore curvilineo di vertice

l'origine e base il sostegno di γ è $\mathcal{A} = \frac{1}{2} \int_{I} |x(t)y'(t) - x'(t)y(t)| dt$.

- Se $\gamma \to \frac{\gamma}{|\gamma|_{\mathbf{R}^2}}$ non è iniettiva cosa misura l'integrale \mathcal{A} ?

Prima forma fondamentale: - ha particolare interesse, nel caso di superficie parametrica Φ bidimensionale nello spazio cartesiano tridimensionale $M=2,\ m=3,$ il ruolo della matrice ${}^tJ\Phi J\Phi,\ 2\times 2,$ il cui determinante jacobiano dà il quadrato il fattore di riscalamento per l'area.

- Piuttosto che come matrice associata ad una trasformazione lineare da \mathbf{R}^2 in sè, la si considera come matrice simmetrica associata ad una forma bilineare simmetrica da $\mathbf{R}^2 \times \mathbf{R}^2$ in \mathbf{R} .
- Si usa ancora la notazione $(x_1, x_2) = (u, v), \Phi = (\Phi_1, \Phi_2, \Phi_3) = (x(u, v), y(u, v), z(u, v)).$

$$\mathbb{I}_{\Phi}(u,v) =: {}^{t}J\Phi J\Phi = \begin{pmatrix} \langle \partial_{u}\Phi \cdot \partial_{u}\Phi \rangle_{\mathbf{R}^{3}} & \langle \partial_{u}\Phi \cdot \partial_{v}\Phi \rangle_{\mathbf{R}^{3}} \\ \langle \partial_{v}\Phi \cdot \partial_{u}\Phi \rangle_{\mathbf{R}^{3}} & \langle \partial_{v}\Phi \cdot \partial_{v}\Phi \rangle_{\mathbf{R}^{3}} \end{pmatrix} =: \begin{pmatrix} E & F \\ F & G \end{pmatrix}$$

- - Per prima cosa si osserva che I è simmetrica,

- - poichè
$$\left\langle \mathbb{I} \begin{pmatrix} a \\ b \end{pmatrix} \cdot \begin{pmatrix} a \\ b \end{pmatrix} \right\rangle_{\mathbf{R}^2} = \left\langle {}^t \! J \Phi J \Phi \begin{pmatrix} a \\ b \end{pmatrix} \cdot \begin{pmatrix} a \\ b \end{pmatrix} \right\rangle_{\mathbf{R}^2} = \left\langle J \Phi \begin{pmatrix} a \\ b \end{pmatrix} \cdot J \Phi \begin{pmatrix} a \\ b \end{pmatrix} \right\rangle_{\mathbf{R}^3} \geq 0,$$

è semidefinita positiva, anzi a meno di un insieme di misura nulla di parametri (u, v), dà un prodotto scalare in \mathbf{R}^2 . La forma quadratica ad esso associata, denotata ancora con \mathbb{I} , si dice:

prima forma fondamentale della superficie.

- Come visto la radice quadrata del determinante di \mathbb{I} dà il rapporto tra l'elemento d'area della superficie in \mathbb{R}^3 e quello in \mathbb{R}^2 dei parametri: $ds_2 =$

$$= \sqrt{|dx \times dy|^2 + |dy \times dz|^2 + |dz \times dx|^2} = |\partial_u \Phi \times \partial_v \Phi|_{\mathbf{R}^3} du dv = |J|_2 \Phi du dv = \det^t J \Phi J \Phi du dv = \det^t \Delta \Phi du dv = \det^t$$

$$=\sqrt{\det \mathbb{I}} du dv = \sqrt{EG - F^2} du dv.$$

- La prima forma fondamentale permette anche di esprimere l'elemento di lunghezza in \mathbb{R}^3 di curve sulla superficie, con le velocità delle curve in \mathbb{R}^2 ottenute rimontando le prime nello spazio dei parametri con Φ^{-1} :

$$\gamma(t) = (x(t), y(t), z(t)) = \Phi(u(t), v(t)) = \Phi(\widetilde{\gamma}(t)), \quad \widetilde{\gamma}(t) = (u(t), v(t)), \quad \gamma'(t) = J\Phi(\widetilde{\gamma}(t))\widetilde{\gamma}'(t):$$

$$ds_1 = |\gamma'(t)|_{\mathbf{R}^3} dt = |J\Phi(\widetilde{\gamma}(t))\widetilde{\gamma}'(t)|_{\mathbf{R}^3} dt = \sqrt{\langle J\Phi(\widetilde{\gamma}(t))\widetilde{\gamma}'(t) \cdot J\Phi(\widetilde{\gamma}(t))\widetilde{\gamma}'(t)\rangle_{\mathbf{R}^3}} dt =$$

$$= \sqrt{\langle ({}^tJ\Phi J\Phi)(\widetilde{\gamma}(t))\widetilde{\gamma}'(t) \cdot \widetilde{\gamma}'(t)\rangle_{\mathbf{R}^2}} dt = \text{omettendo il punto ove si calcola } \mathbb{I}$$

$$= \sqrt{\langle \mathbb{I}\widetilde{\gamma}'(t) \cdot \widetilde{\gamma}'(t)\rangle_{\mathbf{R}^2}} dt = \sqrt{(u', v')}\mathbb{I}\left(\frac{u'}{v'}\right) dt = \sqrt{\mathbb{I}(u', v')} dt =$$

$$= \sqrt{Eu'^2 + Gv'^2 + 2Fu'v'} dt. \quad \text{Pertanto:} \quad \int_{\gamma} f \, ds_1 = \int f(\Phi(u, v)) \sqrt{\mathbb{I}(u', v')} \, dt.$$

Osservazione: si è usato il fatto, di immediata verifica, che data una A matrice $m \times M$, $M \leq m$, si ha per ogni $U, V \in \mathbf{R}^M$: $\langle AU \cdot AV \rangle_{\mathbf{R}^m} = \langle {}^t AAU \cdot V \rangle_{\mathbf{R}^M}$: omettendo nei singoli termini delle eguaglianze le sommatorie degli indici ripetuti

$$(AU)_{i}(AV)_{i} = A_{i}^{j}U_{j}A_{i}^{h}V_{h} = A_{i}^{h}A_{i}^{j}U_{J}V_{h} = ({}^{t}A)_{h}^{i}A_{i}^{j}U^{j}V_{h} = [({}^{t}AA)U]_{h}V_{h}.$$

IV: Differenza tra il misurare aree piuttosto che lunghezze

Si deve notare che mentre la *lughezza* di una cammino può essere *approssimata per difetto* con lunghezze di spezzate, con nodi sempre più fitti, inscritte nel sostegno del cammino (cfr. definizione di lunghezza FT 7) già nel caso di aree *bidimensionali nello spazio tridimensionale* ciò non può accadere.

- Si considera una superficie cilindrica retta di base circolare di raggio R, per comodità unitario, e finita, di altezza A, per comodità unitaria. La si affetti ortogonalmente all'asse in modo uniforme con passo $\varepsilon \to 0$, per comodità $\varepsilon = \frac{1}{2^N}$, $N \in \mathbb{N}$. Numero delle fette $\frac{A}{\varepsilon} = 2^N \sim \frac{1}{\varepsilon}$. Si numerino progressivamente, da 1 a $1+2^N$, le circonferenze che delimitano le fette, per esempio a partire da quella che delimita la base del cilindro.
- Si suddivida la circonferenza, di una delle basi del cilindro, in 2^M , $M \in \mathbb{N}$, pezzi in modo uniforme con passo $\delta = \frac{2\pi}{2^M} = \frac{\pi}{2^{M-1}}$, radianti, $\delta \to 0$. Per ogni nodo su di essa si trasporti la suddivisione sulle altre circonferenze tramite la direttrice per esso.

Si numerino progressivamente i nodi su ogni circonferenza in modo corrispondente. Numero nodi per circonferenza $2^M \sim \frac{1}{\delta}$. Numero nodi $(1+2^N)2^M \sim \frac{1}{\epsilon\delta}$.

- Sulle circonferenza di numerazione pari, le coppie di nodi di posto pari successivi, siano i vertici della comune base di due triangoli, con il rimanente terzo vertice nel nodo intermedio, di numerazione dispari tra i pari considerati, rispettivamente nella circonferenza successiva e nella circonfrenza precedente a quella considerata. Analogamente per le circonferenze di posto dispari con in nodi dispari, tranne le due estreme per le quali vi sarà solo un triangolo con vertice nella successiva o nella precedente circonferenza. Numero di triangoli per fetta $2^{M+1} \sim \frac{1}{\delta}$. Numero triangoli $2^N \cdot 2^{M+1} \sim \frac{1}{\epsilon \delta}$.
- La superficie poliedrale così ottenuta è inscritta nella superficie cilindrica.
- L'area di ogni triangolo è maggiore di quella della sua proiezione ortogonale sul cerchio che contiene la sua base: quest'ultima $\frac{R^2}{\sin}\delta(1-\cos\delta)$ è dell'ordine di δ^3 per $\delta\to 0$.

L'area dei trangoli inscritti in una fetta è quindi maggiore dell'ordine δ^2 , ovvero $\delta^2 = O($ aree triangoli per fetta).

L'area della superficie poliedrale inscitta è maggiore dell'ordine di $\frac{\delta^2}{\epsilon}$.

- Se $\varepsilon = o(\delta^2)$, $\delta \to 0$ si ha quindi che l'area della superficie poliedrale inscritta tende all'infinito.

Alcune dimostrazioni

Teorema di caratterizzazione con sottografici Una funzione $f: \mathbf{R}^N \to \mathbf{R}$ è misurabile se e solo se il suo sottografico è N+1-misurabile.

Dimostrazione: - se $f: \mathbf{R}^N \to \mathbf{R}$ è misurabile il suo sottografico stretto è N+1-misurabile, (e quindi lo sono il suo sottografico e i suoi sopragrafici), infatti: y < f(x) se e solo se

vi è
$$q \in \mathbb{Q}$$
, $y < q$, e $q < f(x)$, quindi $\{(x, y): y < f(x)\} = \bigcup_{q \in \mathbb{Q}} \{x: q < f(x)\} \times (-\infty; q]$.

- Per la seconda implicazione: si denota con $S = \{(x, y) : y < f(x)\} \in \mathcal{M}_{N+1}$ il sottografico di f. Per il secondo teorema di sezione per quasi ogni $y \in \mathbf{R}$ il sottoinsieme di \mathbf{R}^N (visto come sottospazio delle prime N coordinate di \mathbf{R}^{N+1}) $S_y = \{x : y < f(x)\} \in \mathcal{M}_N$.

Dato quindi $a \in \mathbf{R}$, per ogni $n \in \mathbf{N}$ vi è y_n per cui $a - \frac{1}{n} < y_n < a$ per cui $S_{y_n} \in \mathcal{M}_N$ (altrimenti l'insieme degli y per cui $S_y \notin \mathcal{M}_N$ avrebbe misura $\frac{1}{n} > 0$). Si può assumere $y_{n+1} > y_n$. Ma $S_a = \{x : a < f(x)\} = \bigcup_{n \ge 1} S_{y_n} \in \mathcal{M}_N$.

Corollario al teorema di sezione 3: prodotti di misure esterne (FT 21)

$$m_N^*(B \times A) = m_M^*(B) \cdot m_{N-M}^*(A)$$
, per ogni $B \subseteq \mathbf{R}^M$, $A \subseteq \mathbf{R}^{N-M}$.

Dimostrazione: - in FT 21si è provata la diseguaglianza $m_N^*(B \times A) \leq m_M^*(B) \cdot m_{N-M}^*(A)$, ed ci si è ridotti al caso $B, A, B \times A$ siano limitati, e quindi con e misure esterne finite.

- Si usi la notazione $x = (x_1, ..., x_N), x_{\sigma} = (x_1, ..., x_M), x_{\tau} = (x_{M+1}, ..., x_{N-M}).$
- Per approssimazione della misura esterna con aperti esterni vi è $D \supseteq B$, intersezione mnumrabile di aperti in \mathbf{R}^M , quindi misurabile in \mathbf{R}^M , per cui $m_M^*(B) = m_M(D)$. Si nota che $D \times \mathbf{R}^{N-M} \supseteq B \times A$.

Anaogamente vi è $\Delta \supseteq B \times A$ intersezione numerabile di aperti di \mathbf{R}^N , e quindi misurabile in \mathbf{R}^N , per cui $m_N^*(B \times A) = m_N(\Delta)$, ed inoltre $\Delta \subseteq D \times \mathbf{R}^{N-M}$.

Equivalentemente: la sua funzione caratteristica χ_{Δ} vale 1 su $B \times A$, 0 su $(\mathbf{R}^M \setminus D) \times \mathbf{R}^{N-M}$, è misurabile e

$$\int_{D \times \mathbf{R}^{N-M}} \chi_{\Delta}(x) \, dx = \int \chi_{\Delta}(x) \, dx = m_N^*(B \times A).$$

- - Per il teorema di sezione 3 (il teorema di Tonelli per caratteristiche di insiemi), posto $\Delta_{x_{\sigma}} = \{x_{\tau} \in \mathbf{R}^{N-M} : (x_{\sigma}, x_{\tau}) \in \Delta\}$, per q.ogni (anzi nel caso proprio per ogni) $x_{\sigma} \in \mathbf{R}^{M}$, essendo ben definiti tutti gli integrali si ha:

$$\int \chi_{\Delta}(x) \, dx = \int_{D} m_{N-M}(\Delta_{x_{\sigma}}) \, dx_{\sigma}.$$

- - D'altra parte, essendo $B \times A$ un prodotto cartesiano: per ogni $x_{\sigma} \in B$ è $\Delta_{x_{\sigma}} \supseteq A$, cioè $\chi_{\Delta_{x_{\sigma}}} \equiv 1$ su A. Essendo $\Delta \subseteq D \times \mathbf{R}^{N-M}$: per ogni $x_{\sigma} \notin D$ è $\Delta_{x_{\sigma}} = \emptyset$, cioè $\chi_{\Delta_{x_{\sigma}}} \equiv 0$.
- - Concludendo per monotonia dell'integrale M dimensionale e della misura esterna N-M dimensionale:

$$m_N^*(B \times A) = \int \chi_{\Delta}(x) \, dx = \int_D m_{N-M}(\Delta_{x_{\sigma}}) \, dx_{\sigma} \ge \int_D m_{N-M}^*(A) \, dx_{\sigma} = m_{N-M}^*(A) \cdot \int_D dx_{\sigma} = m_{N-M}^*(A) \cdot m_M(D) = m_{N-M}^*(A) \cdot m_M^*(B).$$

Esempi: - si considerino in \mathbb{R}^2 i seguenti quadrati di lato 2 sulla diagonale principale nel primo quadrante: $Q_0 = [0; 2] \times [0; 2], \dots, Q_n = (2n, 2n) + Q_0 = [2n; 2n+2] \times [2n; 2n+2], \dots, n \in \mathbb{N}$. i- Si considerino anche i quadrati $R_n = (2, 0) + Q_n^o$ traslati a destra di 2 degli interni dei Q_n .

- Sia quindi $g(x,y) = \begin{cases} 1, & (x,y) \in Q_n \\ -1, & (x,y) \in R_n. \end{cases}$ $0, \quad \text{altrimenti}$

- - Fissato $x \neq 2(n+1)$, $n \in N$ la $y \mapsto g(x,y)$ o è nulla per x < 0, o è la funzione caratteristica di [0;2] per $0 \le x < 2$, o è la differenza tra le funzioni caratteristiche di intervalli di egual lunghezza per 2(n+1) < x < 2(n+2). Pertanto per $x \neq 2(n+1), n \in \mathbb{N}$

$$\int g(x,y)dy = \begin{cases} 1, & 0 \le x < 2 \\ 0, & 2(n+1) < x < 2(n+2) \text{ o } x < 0 \end{cases}. \text{ Pertanto } \int \left(\int g(x,y) \, dy \right) \, dx = 4.$$

- - Invece fissato $y \neq 2(n+1), n \in N$ la $y \mapsto g(x,y)$ o è nulla per y < 0, o è sempre differenza funzione tra le funzioni caratteristiche di intervalli di egual lunghezza.

Quindi
$$y \neq 2(n+1)$$
, $n \in \mathbb{N}$ si ha $\int g(x,y)dx = 0$, per cui $\int \left(\int g(x,y)dx\right)dy = 0$.

ii- Ognuno dei Q_n sia invece suddiviso in quattro quadrati di lato 1 dagli assi dei lati:

$$Q_n^{--}, Q_n^{+-}, Q_n^{++}, Q_n^{-+}$$
 ove: $Q_n^{ab} = (2n, 2n) + Q_0^{ab}, e Q_0^{--} = (0; 1) \times (0; 1), Q_0^{+-} = (1; 2) \times (0; 1), Q_0^$

11- Ognuno del
$$Q_n$$
 sia invece suddiviso in quattro quadrati di lato i dagli assi del lati: $Q_n^{--}, Q_n^{+-}, Q_n^{++}, Q_n^{-+}$ ove: $Q_n^{ab} = (2n, 2n) + Q_0^{ab}, e Q_0^{--} = (0; 1) \times (0; 1), Q_0^{+-} = (1; 2) \times (0; 1), Q_0^{++} = (1; 2) \times (1; 2), Q_0^{-+} = (0; 1) \times (1; 2).$ Sia quindi $f(x, y) = \begin{cases} 1, & (x, y) \in Q_n^{--} \cup Q_N^{++} \\ -1, & (x, y) \in Q_n^{--} \cup Q_N^{-+} \end{cases}$ 0, altrimenti

- - Si ha: f(x,y)=f(y,x), fissato x la $y\to f(x,y)$ è, a parte gli x del tipo 2n, o nulla o è la differenza tra le caratterstiche di due intervalli disgiunti di egual lunghezza, è quindi con integrale nullo. Cioè $y \mapsto \int f(x,y)dy = x \mapsto \int f(x,y)dx \equiv 0$. Per cui sono sommabili e $\int \left(\int f(x,y)dy \right) dx = \int \left(\int f(x,y)dx \right) dy = 0.$ -- D'altra parte $|f(x,y)| = \begin{cases} 1, & (x,y) \in Q_n \setminus \text{assi} \\ 0, & \text{altrimenti} \end{cases}$. Quindi

$$\int |f(x,y)| dxdy = \sum_{n \in \mathbf{N}} \int_{Q_n} dxdy = \sum_{n \in \mathbf{N}} m_2(Q_n) = \sum_{n \in \mathbf{N}} 4 = +\infty.$$

Indipendenza dalla parametrizzazione: se $\Phi:\overline{D}\subseteq \mathbf{R}^M\to \mathbf{R}^m$ e $\Psi:\overline{\Delta}\subseteq \mathbf{R}^M\to \mathbf{R}^m$, $M\leq m$, sono parametrizzazioni ammissibili per l'integrazione M-dimensionale in \mathbb{R}^m , essenzialmente iniettive, per cui vi sia $\Gamma: \overline{\Delta} \to \overline{D}$, diffeomorfismo C^1 (invertibile con inversa C^1) con

$$\Psi = \Phi_o \Gamma, \ \Phi = \Psi_o \Gamma^{-1}, \text{ allora}$$

$$\int_{\Phi} f \, ds_M = \int_{\Psi} f \, ds_M.$$

Dimostrazione: - Φ , Ψ , siano rispettivamente $C^1(A)$, $C^1(B)$ con A e B aperti, e $m_M(\overline{D}\backslash A)=0$, $m_M(\Delta \setminus B) = 0$, ed iniettive su tali aperti privati dei rispettivi punti critici.

Poichè Γ è bigettiva e trasforma nulli in nulli, e, per la regola della catena, si ha $J\Psi(q)=$ $J[\Phi(\Gamma(q))] = J\Phi(\Gamma(q))J\Gamma(q)$, si può assumere che $A = \Gamma(B)$, e che C_{Φ} e C_{Ψ} siano vuoti, e le due parametrizzazioni iniettive.

- Si ha inoltre:

 $|J|_{M}\Psi(q) = |\det^{t} J\Psi(q)J\Psi(q)| = |\det^{t} J\Gamma(q) \, {}^{t} J\Phi(\Gamma(q)) \, J\Phi(\Gamma(q)) J\Gamma(q)| = (\det J\Gamma(q))^{2} |J|_{M}\Phi(\Gamma(q)).$

- Sempre senza perder di generalità si considerano integrande f non negative definite sul comune sostegno di Φ e Ψ . Posto $\phi =: f_o\Phi|J|_M\Phi$, per il precedente punto $f_o\Psi|J|_M\Psi =$ $f_o\Phi_o\Gamma|\det J\Gamma|(|J|_M\Phi)_o\Gamma=|\det J\Gamma|\phi_o\Gamma$. Per il punto ii) del teorema di cambio di variabile, poichè $|\det J\Gamma| > 0$, si ha che $f \circ \Psi |J|_M \Psi = |\det J\Gamma| \phi \circ \Gamma$ è misurabile se e solo se $f \circ \Phi |J|_M \Phi = \phi$ è misurabile .

- Infine:
$$\int_{\Psi} f ds_M = \int_{\Delta} f(\Psi(x)) |J|_M \Psi(x) dx = \int_{\Delta} f(\Phi(\Gamma(x))(|J|_M \Phi)(\Gamma(x)) \det J\Gamma(x) |dx = \int_{\Delta} f(\Phi(y)) |J|_M \Phi(y) dy = \int_{\Delta} f ds_M.$$

- [B] per V.Barutello et al. Analisi mat. vol. 2;
- [F] per N.Fusco et al. An.Mat. due;
- [FS] per N.Fusco et al. Elem. di An. Mat. due, versione semplificata.

Riduzione:

- [FS] integrali doppi su domini normali pagg. 201-214, integrali tripli su domini normali pagg. 234-236;
- [B] integrali doppi pagg. 461-477, (determinante 479), integrali tripli pagg. 487- 492, esercizi (anche per cambiamento di variabili e integrali di superficie) 495-513;
- [F] integrali doppi e tripli su domini normali (371) 380-382, 386-390, 408-411, integrali in piu' variabili e funzioni continue pagg. 428-430, 438-442, un approccio diverso alla teoria di Lebesgue pagg. (450) 464-467, 468, 471, 474, 475-478,, 481-489, 490-493, 495, 496, '497, 501, 502-506, 508-514.

Cambio di variabile:

[FS] cambiamenti di variabile pagg. 224-233, 237-241, integrali su superficie pagg. 252-259;

[B] pagg. 262-264, 477-486, 492-508, 529, 536-540, 540-542, 557-560;

[F] pagg. 400-408, 411-414, 440-442, 444-448, 515-530, 557-560, 565-573, 579-581.

Integrali su superficie:

[FS] pagg. 252-259, 224-226;

[B] pagg. 485-486, 536-540, 557-560;

[F] pagg.565-573, 579-581.