Sia A una matrice quadrata $n \times n$ e sia $m(x) \in \mathbb{R}[x]$ il suo polinomio minimo.

Proposizione

Se m(x) ha tutte radici reali e tutte di molteplicità 1 allora A è diagonalizzabile, e viceversa.

Prova

Facciamo la prova per induzione sul numero k di autovalori distinti di A. Iniziamo provando che ogni autovalore λ di A reale o complesso è radice di m(x). Sia infatti $v \in \mathbb{R}^n$ o $v \in \mathbb{C}^n$ un autovettore. Allora $m(A)v = 0 = m(\lambda)v$, come è facile provare. Essendo $v \neq 0$ deve essere $m(\lambda) = 0$.

Questo prova che A ha tutti gli autovalori reali, visto che sono tutti radici di m.

Passo base: k = 1, *i.e.* $m(x) = x - \lambda$, $\lambda \in \mathbb{R}$, $A - \lambda I = O$ quindi $A = \lambda I$ è diagonale. Passo induttivo:

se la proposizione è vera per matrici quadrate con meno di k autovalori, allora è vera per matrici con k autovalori.

Supponiamo quindi che $m(x) = (x - \lambda_1)(x - \lambda_2) \cdots (x - \lambda_k)$, $\lambda_i \in \mathbb{R}$, $1 \le i \le k$, distinti. Definiamo $W = Ker(A - \lambda_1 I) \cdots (A - \lambda_{k-1} I)$ e osserviamo che poiché m(A) è la matrice nulla, $Im(A - \lambda_k I) \subset W$ e quindi la sua dimensione è minore o uguale a quella di W. Conseguentemente

 $n = \dim Ker(A - \lambda_k I) + \dim Im(A - \lambda_k I) \le \dim Ker(A - \lambda_k I) + \dim W.$ Ora si ha

- (1) W è invariante per A ossia $A(W) \subset W$.
- $(2) W \cap Ker(A \lambda_k I) = \{0\}$
- (1) Se $w \in W$ si ha $(A \lambda_1 I) \cdots (A \lambda_{k-1} I)(w) = 0$ e inoltre, commutando le matrici, $(A \lambda_1 I) \cdots (A \lambda_{k-1} I)A(w) = A(A \lambda_1 I) \cdots (A \lambda_{k-1} I)(w) = 0$ per cui $A(w) \in W$.
- (2) Se $v \in W \cap Ker(A \lambda_k I)$ allora $A(v) = \lambda_k v$, quindi

 $(A - \lambda_1 I) \cdots (A - \lambda_{k-1} I)(v) = (\lambda_k - \lambda_1)(\lambda_k - \lambda_2) \cdots (\lambda_k - \lambda_{k-1})v$ e poiché il coefficiente di v è diverso da 0 si deve avere v = 0.

Si ha quindi che $n \leq \dim Ker(A - \lambda_k I) + \dim W = \dim (Ker(A - \lambda_k I) + W) \leq n$: pertanto $\mathbb{R}^n = W \oplus Ker(A - \lambda_k I)$.

Ci resta solo da provare che l'applicazione lineare A ristretta allo spazio W, che chiameremo $A':W\to W$ verifica l'ipotesi induttiva. In effetti per definizione di W il polinomio $n(x)=(x-\lambda_1)(x-\lambda_2)\cdots(x-\lambda_{k-1})$ si annulla su A' e quindi gli autovalori di A' sono reali e ce ne sono meno di k. Il polinomio minimo di A' ha solo radici semplici e quindi (ipotesi induttiva) A' è diagonalizzabile, cioè $W=\bigoplus_{i=1}^{k-1} Ker(A-\lambda_i I)$.

Finalmente $\mathbb{R}^n = W \oplus Ker(A - \lambda_k I) = \bigoplus_{i=1}^k Ker(A - \lambda_i I)$ e quindi A è diagonalizzabile. Per il viceversa basta osservare che i fattori di m(A) commutano tra loro, cosa che abbiamo già usato quando abbiamo dimostrato che W è invariante per A. Ogni vettore di \mathbb{R}^n è somma di autovettori e ogni autovettore è annullato da un fattore di m(A).