

Energy Storage Technologies

Energy Storage Systems

- Electrical storage
 - Peak
 - Daily/Weekly
 - Seasonal
- Thermal storage
 - Centralized
 - Distributed
 - Power to heat
- Chemical storage
 - Power to fuels

Electric energy storage technologies

- Pumped hydroelectric storage
- Chemical energy storage
 - Hydrogen
 - LAES
 - Flow batteries
- Electrochemical energy storage
- Compressed air energy storage
- Flywheels
- ·???

Thermal Energy Storage

- Hot water tanks
 - District storage
 - Distributed storage
- PCM
- Heat recovery from hot water
- MicroCHP with heat recovery

■???

Comparison

Technology Development Status	Mature	Numerous New Pumped Hydro FERC Filings in U.S.
Confidence of Cost Estimate	С	Preliminary; Based on planned actual site-specific projects
Accuracy Range	Commercial	-15% to +15%
Operating Stations	40 units (20+ GW) in U.S.	Over 129 GW in operation worldwide
Process Contingency	0%	Variable-speed drive technology being applied to new sites
Project Contingency	10-15%	Uncertainties in sitting, permitting, environmental impact and construction

- Size: up to 4000 MW
- Efficiency: 75-85%
- Duration: 50-60 years

CAES

Technology Development Status	1 st Generation - Mature 2 nd Generation - Demonstration	Commercial offer possible System to be verified by demonstration unit
Confidence of Cost Estimate	С	Based on preliminary designs Owners' costs and site-specific costs not included; these costs can be significant. First-time- engineering costs can be significant.
Accuracy Range	С	-20% to +25%
Operating Field Units	2 nd Generation - None	Two of first-generation type
Process Contingency	15%	Key components and controls need to be verified for second- generation systems.
Project Contingency	10%	Plant costs will vary depending upon underground site geology.

CAES

- Underground storage may be as large as 400 MW for 8-24 hours
- Aboveground are between 3 and 50 MW for 2-6 hours

CAES

Flywheel

Technology Development Status	Demonstration status for Frequency Regulation C	Commercial experience in Power Quality UPS applications Pilots in ISO A/S Market applications
Confidence of Cost Estimate	В	Vendor quotes and system installation estimates.
Accuracy Range	В	-15% to +15%
Operating Field Units	10 or more	In a 20-MW application. Numerous uses in power quality applications.
Process Contingency	1-5%	Uncertain long-term life and performance of the flywheel subsystem
Project Contingency	5-10%	

Flywheel

Flywheel

- Size: between 0.6 and 10 kWh and 100 to 1500 kW
- Direct current with response times in milliseconds
- Roundtrip efficiency: 70-80%
- Duration: 100000 cycles
- Power density 5-10 times that of batteries

Batteries

- Sodium-sulfur
- Sodium-Nickel-Chloride
- Vanadium redox
- Iron-chromium
- Zinc-bromine
- Zinc-Air
- Lead-Acid
- Lithium-Ion

Technology Development Status	A	Significant recent commercial experience.
Confidence of Cost Estimate	А	Data based on installed systems.
Accuracy Range	В	-5% to +8%
Operating Field Units	221 sites	306 MW installed.
Process Contingency	0%	Proven battery performance.
Project Contingency	1-5%	Depending on site conditions.

Energy Density (Volume)	170 kWh/m3
Energy Density (Weight)	117 kWh/ton
Charge/Discharge Efficiency – Batteries (DC Base)	> 86 percent
Charge/Discharge Efficiency – System (AC Base)	≥ 74 percent
Maintenance	Low
Cycle Life	4,500 cycles at rated capacity
Calendar Life	15 yr

Sodium-nickel-chloride batteries

Technology Development Status	Demonstration C	Limited field demonstrations
Confidence of Cost Estimate	D	Vendor quotes and system installation estimates
Accuracy Range	С	-10% to +15%
Operating Field Units	2 or more	Several photovoltaic and distributed storage installations by 2012
Process Contingency	5-10%	Limited testing and filed experience
Project Contingency	5-10%	Limited data on life-cycle costs; limited operation and maintenance cost data

24

Sodium-nickel-chloride batteries

Sodium-nickel-chloride batteries

Technology Development Status	Pre-Commercial C	Systems Verified in Limited Field Demonstrations
Confidence of Cost Estimate	С	Vendor quotes and system installation estimates.
Accuracy Range	С	-10% to +15%
Operating Field Units	Units operating in renewable integration, end-user energy management, and telecom applications	Currently 50-kW, 100-kW, 500-kW, 600- kW, and 1000-kW systems in operation. The largest in the U.S. is a 600- kW/3600-kWh system in a customer energy-management application. A 1-MW/5-MWh system is in operation in Japan.
Process Contingency	5-8%	For MW-scale applications
Project Contingency	5-7%	For MW-scale applications Contingency will vary by size of the application. Vendors are offering 10-year energy services contracts.

Technology Development Status	Laboratory E	Small cells and stack in a lab setting
Confidence of Cost Estimate	С	Vendor quotes and system installation estimates.
Accuracy Range	E	-15% to +15%
Operating Field Units	None	None in utility-scale demonstrations Fe-Cr in niche telecom applications
Process Contingency	15-20%	Efficiency and cycle-life uncertain. Scale-up uncertainties
Project Contingency	10-15%	Limited definition of product designs

Zinc-bromine batteries

Technology Development Status	Demonstration trials	Small systems deployed in limited field demonstrations.
Confidence of Cost Estimate	С	Vendor quotes and system installation estimates.
Accuracy Range	С	-10% to +15%
Operating Field Units	3 or more	None in utility-scale demonstrations of 500 kW or larger.
Process Contingency	10%	Efficiency uncertain. Limited life and operating experience at greater than 100 kW.
Project Contingency	10- 15%	Transportable and small systems have lower construction and installation issues.

Zinc-bromine batteries

Zinc-bromine batteries

Zinc-Air batteries

Zinc-Air batteries

Technology Development Status	Laboratory E	Small cells and stacks in a lab setting some bench scale system tests
Confidence of Cost Estimate	С	Vendor quotes and system installation estimates.
Accuracy Range	E	-15% to +15%
Operating Field Units	None	None in utility-scale demonstrations
Process Contingency	15-20%	Efficiency and cycle life uncertain. Scale-up uncertainties
Project Contingency	10-15%	Limited definition of product designs.

Zinc-Air batteries

Problems with deep discharge

Technology Development Status	Demonstration C	Limited field demonstrations Some advanced systems can be classified as commercial
Confidence of Cost Estimate	D	Vendor quotes and system installation estimates
Accuracy Range	С	-10% to +15%
Operating Field Units	5 or more	Several wind and photovoltaic applications expected by 2013
Process Contingency	10-15%	Limited testing and field experience
Project Contingency	5-10%	Cycle life and depth of discharge for application needs careful evaluation; limited operation and maintenance cost data.

Lead acid batteries

Lead acid batteries

- Chemical reactions involve exchanges of charge between chemical species
- In electrochemical reactions, electric current (charge) is carried by the flow of electrons in the external circuit and by the flow of ions in the electrolyte.
- The flow of ions must be equal to the flow of electrons to maintain local charge balance.

Technology Development Status	Demonstration C	Systems verified in several field demonstrations in a variety of use cases.
Confidence of Cost Estimate	С	Vendor quotes and system installation estimates.
Accuracy Range	С	-20% to +10%
Operating Field Units	32 MW in frequency regulation service 0.5 MW/1 MWh 25-50 kW/2 hr	 Numerous small demonstrations in the 5-kW to 25- kW sizes are currently underway. MW-scale short- energy-duration systems are being operated in frequency regulation applications. MW class for grid support and PV smoothing being introduced 2-MW/4-MWh system installed in an end-use customer peak shaving application
Process Contingency	10-15% Depends on chemistry	Battery management system, system integration, and cooling need to be addressed. Performance in cold climate zones needs to be verified.
Project Contingency	5-10%	Limited experience in grid-support applications, including systems with utility grid interface. Uncertain cycle life for frequency regulation applications.

Let us look at some applications and storage systems

Emerging technologies

Storage Type	Status/Innovation	Estimated Deployment Timing
Liquid Air Energy Storage Systems	System studies. Low-cost bulk storage. Small demos underway.	2013-2014 first +MW-scale demo.
Non/Low-Fuel CAES	System studies underway to optimize cycle and thermal storage system. Low-fuel and non-fuel CAES for bulk storage.	2015 pilot demonstration of 5-MW system
Underground Pumped Hydro	System studies. New concepts under development.	Under study.
Nano-Supercapacitors	Laboratory testing. High power and energy density; very low cost.	2013-2015
Advanced Flywheels	System studies. Higher energy density.	Under development. 2015.
H ₂ /Br Flow	Bench-scale testing. Low-cost storage.	2013-2014 pilot demo.

Emerging technologies

Storage Type	Status/Innovation	Estimated Deployment Timing
Advanced Lead-Acid Battery	Modules under test. Low cost; high-cycle life.	2013-2015 early field trials.
Novel Chemistries	Bench-scale testing. Very low cost; long-cycle life.	2013-2015 modules for test.
Isothermal CAES	2 MW and 1 MW System Development and Demonstration effort. Non-fuel CAES for distributed storage.	2013 pilot system tests.
Advanced Li-ion Li-air and others	Laboratory/basic science. Lower costs; high energy density.	2015-2020

The Highview project

LAES

200 bar maximum pressure, ambient air as hot source, without combustion

Round-trip efficiency

 $\eta_{rt} = 0.10$

LAES

- 200 bar, double methane combustion, 1400K of maximum temperature at turbine inlet, recuperation of exhaust gases, cryogenic Organic Rankine Cycle
- Round-trip efficiency
- **Fuel efficiency**

 $\eta_{rt} = 0.44$

LAES

- 200 bar, double methane combustion, 1400K of maximum temperature at turbine inlet, recuperation of exhaust gases, cold Brayton Cycle
- Round-trip efficiency $\eta_{rt} = 0.50$
- **Fuel efficiency**

 $\eta_{fuel} = 0.79$

PTES

PTES

 The same stack can generate power and hydrogen by using it in reverse mode

SOFC/SOEC

Fuel tank

Power to gas

- There is no leading technology
- Different systems are suitable for different energy storage applications
- No further development in renewable energy is possible without energy storage
- No sure path is clear for the future

Challenges

- Energy supply mix
- Energy demand mix
- Infrastructure development
- Costs
- Energy storage mix