Gas turbine blade cooling

Trend of TIT

Trend of exhaust temperature

Pressure ratio at maximum power

Trend of pressure ratio

Trend of material temperature

Trend of material temperature

Desired trend of material temperature

Figure 3-19. Examples of Typical Transpiration-Cooling Blades

Cooling effectiveness and efficiency

Cooling effectiveness and efficiency

• Cooling effectiveness is defined as:

$$\Phi = \frac{\left(T_m - T_{hg}\right)}{\left(T_c - T_{hg}\right)}$$

• Cooling efficiency is defined as:

$$\eta_{cool} = \frac{\left(T_{c,out} - T_{c,in}\right)}{\left(T_m - T_{c,in}\right)}$$

• The heat load parameter or mass flow function is defined as: $m^* = \frac{c_{p,c} \cdot m_c}{m_c}$

$$n^* = \frac{c_{p,c} \quad m_c}{A_{hg} \cdot h_{hg}}$$

Film cooling effectiveness

• The film cooling effectiveness is defined as:

$$\eta_{film} = \frac{\left(T_{film} - T_{hg}\right)}{\left(T_c - T_{hg}\right)}$$

- If the film temperature is at the cooling air temperature the effectiveness is 1. When the film temperature is the same as the hot gas temperature the effectiveness is 0.
- This parameter defines how much the film is mixed with hot gas and changes along the blade

Fig. 1 Cooling concepts of a modern multipass turbine blade

