
Rigid Registration:
The Iterative Closest Point Algorithm

Ziv Yaniv

School of Engineering and Computer Science
The Hebrew University, Jerusalem, Israel.

This lecture continues the subject of point based rigid registration. An important
aspect of the algorithms previously presented was the assumption that the pairing
between point coordinates in the two coordinate systems is known. In this lecture
we present an algorithm which will not require this assumption and furthermore does
not require a full pairing between data sets.

Problem Definition
Given the coordinates of points measured in two cartesian coordinate systems, without
a known pairing, find the rigid transformation between the two systems.

The summary is divided into four sections: (1) Iterative closest point algorithm (ICP).
(2) k-D Trees (3) Accelerated ICP (4) Algorithm initialization and local minima.

1 Iterative Closest Point Algorithm

In our previous lecture we described algorithms which performed rigid registration
given two point sets {Ri} and {Li} with a known pairing between them. A similar
problem arises when we want to perform rigid registration using two point sets without
specifying the pairing. An iterative approach to this problem was presented in [3] and
[17]. Essentially both articles describe the same algorithm 1.

Given two point sets {Ri} and {Li} without a known pairing between them we want
to compute the rigid transformation between them. If we somehow obtain the missing
pairing then we already have a closed form solution to the problem by minimizing
the following objective function (details in previous lecture):

f(R, t) =
1

N

N∑

i=1

‖pr,i −R(pl,i)− t‖ , where N is the number of paired points.

The question is how do we find the pairing?

1This summary is based on [3]

1

Iterative Closest Point Algorithm

1. Create a pairing between point sets, closest points are matched.

2. Compute the rigid registration given the pairing.

3. Apply the transformation to the data and compute the mean distance between
point sets.

4. If change in mean distance has not decreased below a given threshold dµ or
number of iterations has reached the threshold MAX ITERATIONS terminate.

Table 1: Iterative Closest Point algorithm.

Let us assume that the transformation is small, nearly identity. This means that the
distance between the point in the coordinate system R and its transformed location
in L is small. Given this assumption a likely pairing for the point pr is the closest
point in {Li}:

d(pr, {Li}) = min
pl∈{Li}

‖pr − pl‖

Unfortunately there is no guarantee that the transformation is nearly the identity
transform, so taking the closest point in {Li} will usually yield a wrong match. A
standard approach in such situations is to use iterations in the hope of converging to
the correct solution, hence the Iterative Closest Point algorithm, Table 1.

Now that we have defined the general framework of the ICP algorithm we can mention
the differences between the two works [3] and [17]:

1. In [3] all point pairs are used when computing the transformation, while in
[17] only pairs whose distance is below a certain threshold are retained. This
yields greater robustness to the presence of outliers, but makes it impossible to
analytically prove convergence to local minima.

2. In [3] the paired point registration is computed using the method due to Horn [8],
while [17] uses the dual number quaternion method due to Walker [15].

Looking at the description of the algorithm (Table 1) we can clearly see that the
pairing step is the most computationally expensive step with a worst case cost of
O(MN) for two point sets of size M and N respectively. Given a naive search for the
closest point we incur this worst case cost which makes this algorithm impractical for
large data sets. Two immediate improvements are:(a) Not to take the square root
when working with the L2 norm. (b) Partial distance/sum computation, continue
computing the distance only if the partial sum is still smaller than the current minimal
distance. Unfortunately even with these improvements the algorithm is impractical
with large data sets, as its complexity is still O(MN). In the next section we introduce

2

(1,2)

(3,4)

(5,6)

(7,8)

(3,4)

(5,6)

(7,8)

(1,2)

Key - X

Key - X

Key - Y

Key - Y

a = (1,2) b = (3,4) c = (5,6) d = (7,8)

Figure 1: Two examples of inserting four points into the naive k-D tree: (1) Left tree
is the result of insertion order ’abcd’. (2)Right tree is the result of insertion order
’bcad’.

a spatial data structure which allows us to perform nearest neighbor searches in less
than linear time per search.

2 k-D Trees

A k-D tree, k-Dimensional binary tree, is a spatial data structure originally proposed
by [2]. Given d-dimensional points this data structure imposes a spatial decomposition
which allows for efficient search on orthogonal range queries and nearest neighbor
queries. This efficiency is due to the spatial decomposition which prunes much of the
the search space. Most of the following is found both in the cited articles and in two
books [12] and [5]. In the following subsections we give a brief description of several
types of k-D trees.

2.1 Naive k-D Tree

This data structure is the original k-D tree proposed by [2]. Unlike the other variants
it does not require the whole set of points to be available prior to its construction. On
the other hand its structure is affected by the order in which the points are inserted.

Points are inserted just as if we were inserting data into a regular binary search tree
with the exception that the key we use changes between levels of the tree. At each
level i the key is the (i mod d) coordinate where d is the dimensionality of the points.

The point data is held in all nodes of the tree. This type of tree can result in different
trees for the same data, depending on the insertion order (Figure 1).

3

2.2 Median k-D Tree

When referring to k-D trees this is probably what most people are referring to. This
data structure is due to [6].

Given a set {Pi} of d-dimensional points create the k-D tree.

Median k-D Tree Creation

1. If cardinality of {Pi} is less than bucket size create leaf node containing point
data.

2. Else

(a) Choose key coordinate (two options):

i. If at level i key is the (i mod d) coordinate.

ii. Find axis with maximal spread and choose this as the key (requires
additional information held in internal tree nodes).

(b) Split data according to median of the ’key’ coordinate and apply recur-
sion with two point sets {Pi}=<median, left subtree, and {Pi}>median, right
subtree.

The cost of construction is O(nlogn).
The most computationally expensive step is finding the median according to the given
key. Median finding can be done in O(n) complexity. Given this complexity for each
tree level and that there are logn levels the total construction time is O(nlogn).
Linear time median selection algorithms are a bit tedious from an implementation
standpoint. We can solve this by preprocessing the point data. Sort the data accord-
ing to all d-dimensions, a complexity of O(nlogn). At each recursive call pass left
and right sorted sub lists to the calls, median is given in O(1) for each partition and
sub list construction is an O(n) operation.

a = (1,2) b = (3,4) c = (5,6) d = (7,8)

3

2 6

(1,2) (5,6) (7,8)(3,4)

Key - X

Key - Y

Figure 2: A tree created with the points a,b,c,d with bucket size set to one, key chosen
according to (level mod 2) and partition plane is the median.

4

After constructing the tree we would like to perform nearest neighbor queries using
it: Given a d-dimensional point and the root of the k-D tree as input find the nearest
neighbor.

Median k-D Tree Nearest Neighbor

1. If k-D tree node is a leaf perform an exhaustive search on points contained in
the node.

2. Else

(a) Key is coordinate (i mod d), where i is current level in the tree.

(b) If point[key] > partition value

i. Recurse on right sub tree.

ii. If currentMinimalDistance > distance(point, partitionP lane)
recurse on left sub tree.

(c) Else

i. Recurse on left sub tree.

ii. If currentMinimalDistance > distance(point, partitionP lane)
recurse on right sub tree.

From the description of the nearest neighbor query algorithm it is evident that the
search space is pruned steps b(ii), c(ii) as the search is conducted on the other side
of the partition plane only if the points distance from its current nearest neighbor is
greater than its distance from the partition plane (Figure 3).

2.3 Sproull/Eigen k-D Tree

This is a refinement on the median k-D tree. Instead of the partition planes being
parallel to the coordinate axis they are chosen based on the data [14]. The separation
plane is chosen to be perpendicular to the eigenvector corresponding to the largest
eigenvalue of the covariance matrix. This is perpendicular to the direction of most
variance found in the data. The points are projected onto this direction and the
median is chosen as the separating value. This results in more balanced trees, but
costs O(d3) for each eigenvector computation.

This eigenvector based technique was recently rediscovered in [9], constructing a tree
structure similar to the k-D tree. Instead of a binary partition at each level the
partition has a constant size (when the partition size is two we return to [14]).

5

NN

p1

p2

NN

Figure 3: Relationship between query points p1,p2 an their nearest neighbor. Because
the distance between p1 and the partition plane is smaller than from its NN a search
in the right half plane is required. The point p2 does not require search in the right
half plane.

3 Accelerated ICP

During the iterations the ICP algorithm produces a set of transformations, 7D points:

Ti = [q|t] = [s, x, y, z|dx, dy, dz]

We now look at the direction these points define:

∆Tk = Tk − Tk−1

Given three points we have two directions as defined above ∆Tk and ∆Tk−1. If it
turns out that we are heading in approximately the same direction (Figure 4) in the
7D space then we can try to improve our solution by extrapolation. The difference in
direction is given by:

θk = cos−1

(
∆Tk∆Tk−1

‖∆Tk‖‖∆Tk−1‖

)
(1)

Given an angular tolerance of δθ we say that the directions are approximately the
same if

θk < δθ and θk−1 < δθ

Let Tk, Tk−1 and Tk−2 be three consecutive transformations and dk, dk−1 and dk−2

their respective mean square errors. We define the following approximate arc lengths:

vk = 0, vk−1 = −‖∆Tk‖, vk−2 = −‖∆Tk−1‖+ vk−1

Next linear and parabolic interpolants for the last three points are computed:

d1(v) = a1v + b1 d2(v) = a2v
2 + b2v + c2

6

θk−1 θk

T
k−3

T
k

T
k−1T

k−2

Figure 4: Extrapolation is done when we are heading in approximately the same
direction.

This gives us a possible linear update, the zero crossing of the line, and a parabolic
update, the extremum point of the parabola:

v1 = −b1/a1 > 0 v2 = −b2/2a2

We define a maximal scale value vmax to remove the problem of overshooting. Having
computed v1 and v2 apply the following extrapolation strategy:

1. If 0 < v2 < v1 < vmax or 0 < v2 < vmax < v1

T ′
k = Tk + v2

∆Tk

‖∆Tk‖

2. If 0 < v1 < v2 < vmax or 0 < v1 < vmax < v2

T ′
k = Tk + v1

∆Tk

‖∆Tk‖

3. If v1 > vmax and v2 > vmax

T ′
k = Tk + vmax

∆Tk

‖∆Tk‖

If applying T ′
k results in a mean square error smaller then dk then we have improved

our registration without iterating. In [3] vmax was set empirically to 25‖∆Tk‖ (the
phrase magic number comes to mind).

This extrapolation strategy has a certain deficiency due to coupling of rotation and
translation which restrains the extrapolation. For instance if the rotation is well
aligned but the translation is not, there will be no extrapolation. Applying the ex-
trapolation scheme both to rotations and translations separately yields better results
[13].

At this point in the discussion it should be pointed out that applying the extrapola-
tion is not always beneficial. There are cases where the acceleration may cause the

7

minimization to be trapped in a local minimum which would not have been entered
had we not performed the extrapolation.

We conclude this section with an important observation for those interested in imple-
menting the acceleration. When checking if two transformations are approximately
in the same direction, Equation 1, we are comparing two vectors whose elements are
a quaternion q and a translation t. Remembering that the rotations defined by q
and −q are equivalent it is clear that we should not compute the dot product of two
consecutive transformations directly. Instead we arbitrarily decide that the first entry
of all our quaternions should be positive/negative. We then modify the quaternion
yielded by our closed form solution accordingly. This modification does not change
the rotation but now we can check if we are proceeding in the same direction in our
seven dimensional search space.

4 Algorithm Initialization and Local Minima

The main drawback of the ICP algorithm is that it only guarantees convergence to
a local minimum, while we want to arrive at the global minimum (this is a feature of
many iterative algorithms). In our quest for the global minimum we should look into
two issues, algorithm initialization and our optimization search strategy.

For the ICP algorithm to converge to the global minimum we have to initialize it
near this minimum. The initialization is done by obtaining/computing an estimate
of the desired transformation. Obtaining an initial transformation can be done by
manipulating a 3D model on the computer and aligning it to the acquired data. The
manipulation yields the desired initialization. Another initialization strategy is to
acquire a small set of paired points, where the pairing does not have to be accurate.
The initial transformation is computed from this set of points using Horn’s algorithm.

In [16] and in [4] the second strategy is applied. In [16] an in vitro study is conducted
on a phantom. An exact a priori pairing is given, noise is added to the measurements
and an initial transformation is computed from this data. Given this initial transfor-
mation the phantom surface is sampled and the ICP algorithm is applied. Empirical
results show that the combination of the inaccurate pairing combined with the sur-
face data yields better results than just the original pairing. In [4] anatomical data
is used, CT scans of the lungs. An initial coarse point pairing is done by searching
the two scans we want to align for known anatomical landmarks. This is done using
templates of these landmarks and the Normalized Cross Correlation ratio as a dis-
tance function. Once the landmarks are located in both scans the transformation is
computed using the landmark centroids as the corresponding paired points. Finally
the ICP algorithm is applied using the segmented surface of the lungs and the initial
transformation.

Unfortunately initialization near the global minimum still does not guarantee conver-
gence to it, if there are local minima near the global one. This is why we have to

8

consider the search strategy. At each step in our algorithm we would like to produce
an update to the current transformation, which will move us towards the global mini-
mum. There exist several popular search heuristics which increase the chances of this
happening: simulated annealing, genetic algorithms and tabu search. For a concise
introduction to these heuristics see chapter one of [11].

In [7] a simulated annealing approach is used while in a later work by the same
group [1] a genetic algorithm is applied (this algorithm or a similar one is used in the
commercial system SurgiGATE). Both works initialize the ICP stage using a coarse
paired point scheme. The ICP minimization function is also updated to incorporate
a penalty term based on the coarse point pairing. This term constrains the trans-
formation so that the distance between the coarse pairing does not get too large. In
[10] Gaussian noise is added to the data and the ICP algorithm is performed. As the
algorithm progresses the standard deviation of the noise is reduced. This approach is
very similar to simulated annealing. According to the experimental results it allowed
the algorithm to escape from local minima found around the global one.

A k-D Tree Implementations

The following implementations are available on the web:

1. “ANN: Library for Approximate Nearest Neighbor Searching” from University
of Maryland.
http://www.cs.umd.edu/ mount/ANN/

2. “Ranger - Nearest Neighbor Search in Higher Dimensions” from Stony Brook
State University of New York.
http://www.cs.sunysb.edu/ algorith/implement/ranger/implement.shtml

3. “CGAL: Computational Geometry Algorithms Library” a consortium of aca-
demic institutes developing a common library.
http://www.cgal.org

References

[1] Bächler R., Bunke H., Nolte L.P., “Restricted Surface Matching–Numerical Op-
timization and Technical Evaluation”, Computer Aided Surgery, Vol.6(3), pp.
143–152, 2001.

[2] Bentley J., “Multidimensional binary search trees used for associative searching”,
Commun. ACM, Vol.18, pp. 509–517, 1975.

9

[3] Besl P.J., McKay N.D., “A Method for Registration of 3D Shapes”, IEEE Trans.
on Pattern Analysis and Machine Intelligence (TPAMI), Vol.14(2), pp. 239–255,
1992.

[4] Betke M., Hong H., Ko J.P., “Automatic 3D Registration of Lung Surfaces in
Computed Tomography Scans”, Medical Image Computing and Computer As-
sisted Intervention (MICCAI), 2001.

[5] de Berg M., van Kreveld M., Overmars M., Schwarzkopf O., Computational Ge-
ometry, Algorithms and Applications, Springer-Verlag, 1997.

[6] Friedman J., Bentley J., Finkel R., “An algorithm for finding best matches in
logarithmic expected time”, ACM Transactions on Mathematical Software, Vol.3,
pp. 209–226, 1977.

[7] Gong J., Bächler R., Sati M., Nolte L.P., “Restricted Surface Matching, A New
Approach to Registration in Computer Assisted Surgery”, CVRMed-MRCAS, pp.
597–605, 1997.

[8] Horn B.K.P., “Closed-form solution of absolute orientation using unit quater-
nions”, Journal of the Optical Society of America, Vol. 4(4), pp. 629–642, 1987.

[9] McNames J., “A Fast Nearest-Neighbor Algorithm Based on a Principal Axis
Search Tree”, IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), Vol. 23(9), pp. 964–976, 2001.

[10] Penney G.P., Edwards P.J., King A.P. et al., “A Stochastic Iterative Closest
Point Algorithm (stochastICP), Medical Image Computing and Computer As-
sisted Intervention (MICCAI), 2001.

[11] Rayward-Smith V.J., Osman I.H., Reeves C.R., Smith G.D. Editors, Modern
Heuristic Search Methods, Wiley, 1996.

[12] Samet H., The Design and Analysis of Spatial Data Structures, Addison Wesley,
1990.

[13] Simon D.A., Hebert M., Kanade T., ”Techniques for Fast and Accurate Intra-
Surgical Registration” Journal of Image Guided Surgery, Vol.1(1), 1995.

[14] Sproull R.L., “Refinements to nearest-neighbor searching”, Algorithmica, Vol.6,
pp. 579–589, 1991.

[15] Walker M.W., Shao L., Volz R.A., “Estimating 3-D location parameters us-
ing dual number quaternions, Computer Vision, Graphics, and Image Processing
(CVGIP), Vol.54(3), pp. 358–367, 1991.

[16] Yaniv Z., Sadowsky O., Joskowicz L., ”In-vitro accuracy study of contact
and image-based registration: materials, methods, and experimental results”,
Computer-Assisted Radiology and Surgery (CARS), Elsevier pp. 141–146, 2000.

10

[17] Zhang Z., “Iterative Point Matching for Registration of Free-Form Curves and
Surfaces”, International Journal of Computer Vision (IJCV), Vol.13(2), pp. 119–
148, 1994.

11

