• Scrivere nella forma F(v) = 0 il sistema di equazioni non-lineari

$$2x^{2} + y + z = 1.$$

 $x + 3y^{2} + z = 1,$
 $x + y + 4z^{2} = 1,$

con $v = [x, y, z]^T \in \mathbb{R}^3$ and $F : \mathbb{R}^3 \to \mathbb{R}^3$, e calcolarne lo Jacobiano J_F .

- Scrivere "function handles" $F = \mathbb{Q}(v) [2*v(1)^2 + ...] e$ $JF = \mathbb{Q}(v) [4*v(1) ...]$ che calcolano $F \in JF$ su un vettore v in input.
- Per controllare che lo Jacobiano sia corretto, generare vettori casuali v = randn(3,1), h = 1e-5 * randn(3,1) e controllare che $F(v+h) F(v) JF(v)h = O(\|h\|^2)$.
- Scrivere una function $x1 = multinewton_step(F, JF, x0)$ che esegue un passo del metodo di Newton multivariato. Testarla sul sistema precedente con $x_0 = [1, 1, 1]^T$, che dovrebbe produrre $x_1 = [\frac{1}{2}, \frac{1}{2}, \frac{1}{2}]^T$.
- Scrivere una function x = multinewton(F, JF, x0, m) che esegue m passi.
- Analizzare la convergenza come nella lezione scorsa, modificando la funzione in function $[x, e] = multinewton_error(F, JF, x0, m, z)$, per restituire il vettore degli errori $e_i = \|x^{(k)} z\|_{\infty}$, i = 1, 2, ..., m.
- Scrivere una function x = multicorde(F, JFx0, x0, m) che esegue m passi del metodo delle corde, calcolando una volta sola una fattorizzazione della matrice JFx0. L'argomento JFx0 dev'essere una matrice, non una handle!