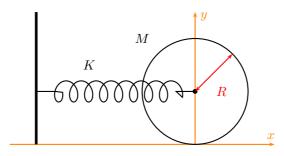
Nome	Cognome	$Matricola\ num.$

Compitino di Fisica Generale del 27/05/2009

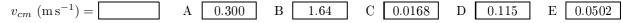
Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

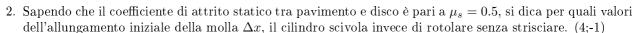
Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.

Si assumano i seguenti valori per le costanti che compaiono nei problemi:


intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

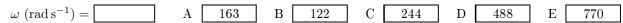

Problema 1

Un cilindro omogeneo di massa M=650 g e raggio R=8.60 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=140~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=2.50~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

1.	Supponendo che il moto del	cilindro sia	ı di rotolamento	puro, si tre	ovi la massima	velocità ragg	giunta da
	centro di massa del cilindro.	(3;-1)					

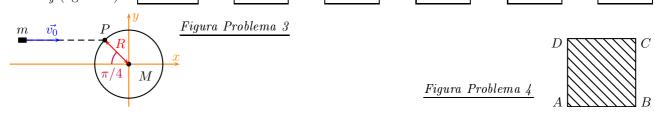
Problema 2

Un palloncino sferico di massa m=35.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=26.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=3.00 m.



$$\lambda~(\mathrm{kg}~\mathrm{m}^{-1}) = \boxed{\hspace{1cm}} A~\boxed{0.00122} ~~B~\boxed{0.0104} ~~C~\boxed{0.0120} ~~D~\boxed{0.00109} ~~E~\boxed{8.91}_{\times 10^{-4}}$$

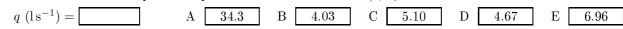
Problema 3


Un disco di massa M=170 g e raggio R=10.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=69.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4


Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 24.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 2.50 kg ciascuna poste nei tre vertici consecutivi A, B, C.

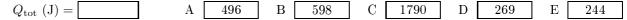
1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R = 7.70 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r = 1 cm. Si assuma per la densità dell'acqua il valore $\rho = 1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.40 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=10.0 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a = 50.0$ °C. Un cubo di marmo di capacità termica $C_m = 200 \text{ cal K}^{-1}$ a temperatura $T_m = -11.0$ °C viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r = 50 \text{ cal K}^{-1}$ a temperatura $T_r = 71.0$ °C.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 29.3 B 36.7 C 41.1 D 19.5 E 50.0

Problema 7

Un gas perfetto **biatomico** con n=2.10 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=2.50$ l e alla temperatura $T_i=120^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=27.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

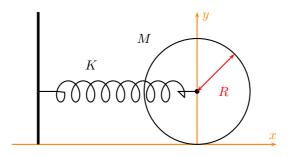
Nome	Cognome	$Matricola\ num.$

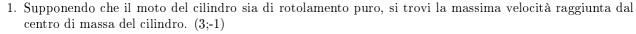
Compitino di Fisica Generale del 27/05/2009

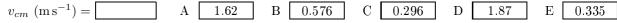
Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

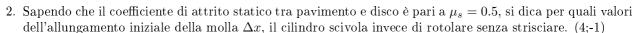
Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.


Si assumano i seguenti valori per le costanti che compaiono nei problemi:

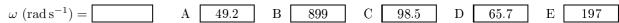

intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.


Problema 1

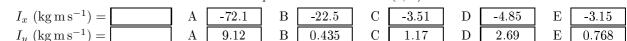
Un cilindro omogeneo di massa M=570 g e raggio R=8.30 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=130~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=2.40~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

Problema 2

Un palloncino sferico di massa m=25.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=26.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=4.30 m.



$$\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \quad \boxed{0.0107} \quad \mathrm{B} \quad \boxed{0.0123} \quad \mathrm{C} \quad \boxed{0.0259} \quad \mathrm{D} \quad \boxed{0.00756} \quad \mathrm{E} \quad \boxed{0.0228}$$

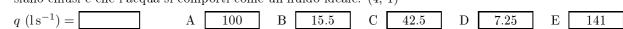

Problema 3

Un disco di massa M=240 g e raggio R=14.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=39.0$ m s⁻¹ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4


Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 19.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 2.70 kg ciascuna poste nei tre vertici consecutivi A, B, C.

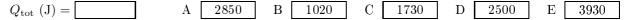
1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R=6.40 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r=1 cm. Si assuma per la densità dell'acqua il valore $\rho=1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.70 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=11.0 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=48.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-10.0^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=70.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 36.0 B 39.6 C 19.0 D 28.5 E 48.0

Problema 7

Un gas perfetto **biatomico** con n=2.00 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=2.50$ l e alla temperatura $T_i=120^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=26.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

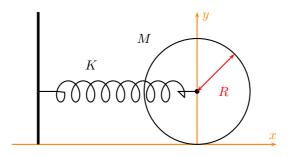
Nome	Cognome	$Matricola\ num.$

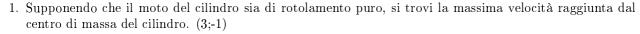
Compitino di Fisica Generale del 27/05/2009

Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.


Si assumano i seguenti valori per le costanti che compaiono nei problemi:

intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

Problema 1

Un cilindro omogeneo di massa M=380 g e raggio R=7.90 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=180~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=2.70~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

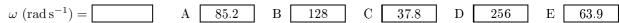
 $v_{cm} \text{ (m s}^{-1}) =$ A 2.63 B 0.217 C 2.32 D 0.398 E 0.480

2. Sapendo che il coefficiente di attrito statico tra pavimento e disco è pari a $\mu_s = 0.5$, si dica per quali valori dell'allungamento iniziale della molla Δx , il cilindro scivola invece di rotolare senza strisciare. (4;-1)

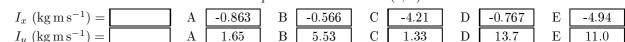
 $\Delta x \text{ (cm)} =$ A 1.72 B 0.228 C 0.712 D 3.10 E 2.30

Problema 2

Un palloncino sferico di massa m=30.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=29.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=3.30 m.



 $\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \quad \boxed{0.0270} \quad \mathrm{B} \quad \boxed{0.398} \quad \mathrm{C} \quad \boxed{0.0226} \quad \mathrm{D} \quad \boxed{0.112} \quad \mathrm{E} \quad \boxed{0.0208}$

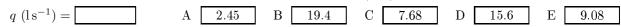

Problema 3

Un disco di massa M=280 g e raggio R=13.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=47.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4


Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 20.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 3.30 kg ciascuna poste nei tre vertici consecutivi A, B, C.

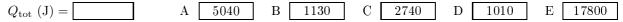
1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R=6.60 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r=1 cm. Si assuma per la densità dell'acqua il valore $\rho=1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.90 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=9.70 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=49.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-9.60^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=72.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 19.7 B 29.6 C 37.1 D 49.0 E 40.5

Problema 7

Un gas perfetto **biatomico** con n=1.60 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=2.70$ l e alla temperatura $T_i=110^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=33.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

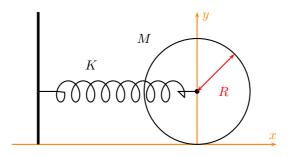
Nome	Cognome	$Matricola\ num.$

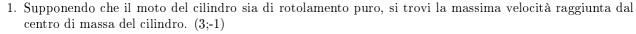
Compitino di Fisica Generale del 27/05/2009

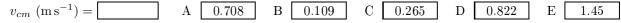
Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

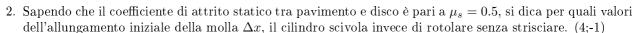
Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:

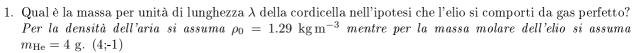

scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.


Si assumano i seguenti valori per le costanti che compaiono nei problemi:


intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.


Problema 1

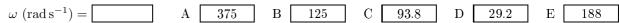
Un cilindro omogeneo di massa M=410 g e raggio R=6.20 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=120~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=1.90~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.



$$\Delta x \text{ (cm)} =$$
 A 43.6 B 3.20 C 4.16 D 5.02 E 2.79

Problema 2

Un palloncino sferico di massa m=34.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=25.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=2.20 m.



$$\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \quad \boxed{0.0230} \quad \mathrm{B} \quad \boxed{0.00303} \quad \mathrm{C} \quad \boxed{0.00626} \quad \mathrm{D} \quad \boxed{0.0399} \quad \mathrm{E} \quad \boxed{0.0132}$$

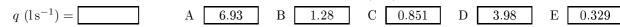

Problema 3

Un disco di massa M=160 g e raggio R=13.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=69.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4


Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 28.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 3.30 kg ciascuna poste nei tre vertici consecutivi A, B, C.

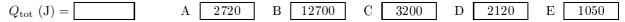
1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R = 7.90 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r = 1 cm. Si assuma per la densità dell'acqua il valore $\rho = 1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.30 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=9.20 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a = 50.0$ °C. Un cubo di marmo di capacità termica $C_m = 200 \text{ cal K}^{-1}$ a temperatura $T_m = -14.0$ °C viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r = 50 \text{ cal K}^{-1}$ a temperatura $T_r = 77.0$ °C.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 27.0 B 37.7 C 50.0 D 18.0 E 40.8

Problema 7

Un gas perfetto **biatomico** con n=1.30 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=1.000$ l e alla temperatura $T_i=120^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=32.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

Com	pito	#	5
-----	------	---	---

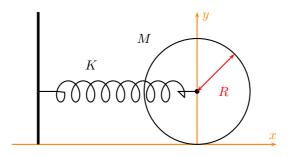
Nome	Cognome	$Matricola\ num.$

Compitino di Fisica Generale del 27/05/2009

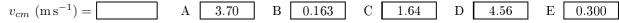
Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

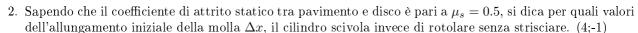
Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.

Si assumano i seguenti valori per le costanti che compaiono nei problemi:


intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.


Problema 1

Un cilindro omogeneo di massa M=640 g e raggio R=9.30 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=110~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=2.80$ cm. Ad un dato istante, il sistema viene lasciato libero di muoversi.

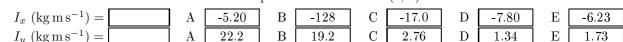
1.	Supponendo che il moto del	cilindro sia	ı di rotolamento	puro, si tre	ovi la massima	velocità ragg	giunta da
	centro di massa del cilindro.	(3;-1)					

$$\Delta x \text{ (cm)} =$$
 A 8.55 B 3.17 C 4.75 D 32.6 E 1.92

Problema 2

Un palloncino sferico di massa m=28.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=26.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=4.30 m.

$$\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \quad \boxed{0.107} \quad \mathrm{B} \quad \boxed{0.0269} \quad \mathrm{C} \quad \boxed{0.0248} \quad \mathrm{D} \quad \boxed{0.01000} \quad \mathrm{E} \quad \boxed{0.00614}$$

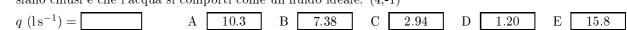

Problema 3

Un disco di massa M=220 g e raggio R=13.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=63.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4


Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 34.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 3.30 kg ciascuna poste nei tre vertici consecutivi A, B, C.

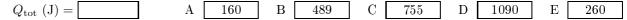
1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R = 7.00 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r = 1 cm. Si assuma per la densità dell'acqua il valore $\rho = 1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.80 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=11.0 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=49.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-13.0^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=74.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 36.7 B 49.0 C 18.0 D 40.1 E 27.0

Problema 7

Un gas perfetto **biatomico** con n=1.40 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=1.40$ l e alla temperatura $T_i=120^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=35.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

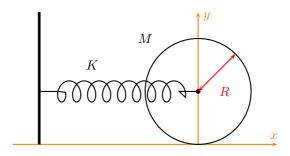
Nome	Cognome	$Matricola\ num.$

Compitino di Fisica Generale del 27/05/2009

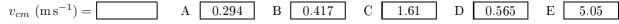
Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

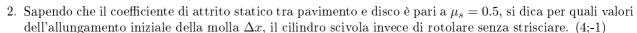
Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.

Si assumano i seguenti valori per le costanti che compaiono nei problemi:


intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.


Problema 1

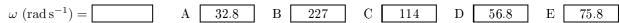
Un cilindro omogeneo di massa M=580 g e raggio R=4.50 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=170~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=2.10~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

1.	Supponendo che il moto de	el cilindro	sia di	rotolamento	puro,	si trovi	la	\max	velocità	raggiunta	da
	centro di massa del cilindro	(3;-1)									

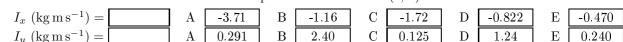
$$\Delta x \text{ (cm)} =$$
 A 81.5 B 2.79 C 5.02 D 34.0 E 70.9

Problema 2

Un palloncino sferico di massa m=36.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=26.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=3.40 m.



$$\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \ \boxed{0.00463} \quad \mathrm{B} \ \boxed{0.00289} \quad \mathrm{C} \ \boxed{0.0103} \quad \mathrm{D} \ \boxed{0.00173} \quad \mathrm{E} \ \boxed{0.00938}$$

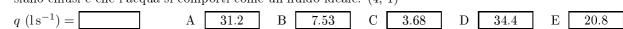

Problema 3

Un disco di massa M=220 g e raggio R=14.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=45.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4


Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M=32.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m=2.60 kg ciascuna poste nei tre vertici consecutivi A, B, C.

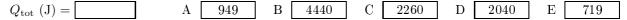
1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R = 7.00 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r = 1 cm. Si assuma per la densità dell'acqua il valore $\rho = 1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.80 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=9.90 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=49.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-8.20^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=70.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 36.9 B 49.0 C 20.4 D 30.6 E 40.7

Problema 7

Un gas perfetto **biatomico** con n=2.90 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=1.90$ l e alla temperatura $T_i=120^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=35.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

Comp	oito	#	7
------	------	---	---

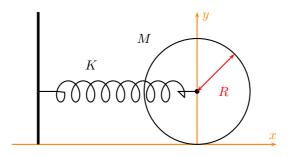
Nome	Cognome	$Matricola\ num.$

Compitino di Fisica Generale del 27/05/2009

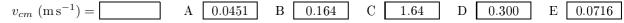
Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

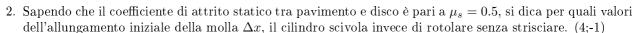
Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.

Si assumano i seguenti valori per le costanti che compaiono nei problemi:


intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.


Problema 1

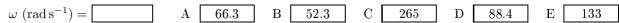
Un cilindro omogeneo di massa M=510 g e raggio R=4.60 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=130~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=2.30~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

1.	Supponendo che il moto del	cilindro sia	ı di	rotolamento	puro,	si trov	la	\max sima	velocità	raggiunta	$_{ m dal}$
	centro di massa del cilindro.	(3;-1)									

$$\Delta x \text{ (cm)} =$$
 A 9.73 B 3.20 C 8.97 D 5.77 E 1.43

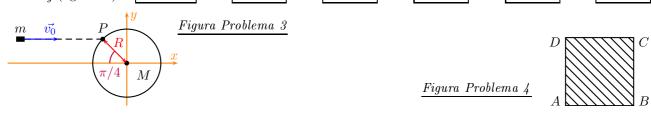
Problema 2

Un palloncino sferico di massa m=15.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=25.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=3.80 m.



$$\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \quad \boxed{0.0105} \quad \mathrm{B} \quad \boxed{0.121} \quad \mathrm{C} \quad \boxed{0.0202} \quad \mathrm{D} \quad \boxed{0.0127} \quad \mathrm{E} \quad \boxed{0.0237}$$

Problema 3

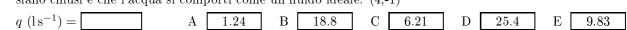

Un disco di massa M=190 g e raggio R=9.60 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=36.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4

Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 30.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 3.50 kg ciascuna poste nei tre vertici consecutivi A, B, C.


1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

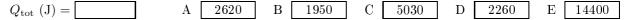
$$R (N) =$$
 A 469 B 103 C 294 D 181 E 124

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R=6.30 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r=1 cm. Si assuma per la densità dell'acqua il valore $\rho=1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.10 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=12.0 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=49.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-12.0^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=74.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 18.5 B 40.2 C 37.0 D 49.0 E 27.8

Problema 7

Un gas perfetto **biatomico** con n=2.80 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=1.70$ l e alla temperatura $T_i=120^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=32.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

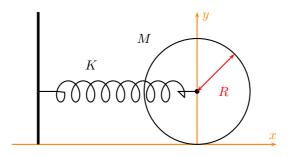
Nome	Cognome	$Matricola\ num.$

Compitino di Fisica Generale del 27/05/2009

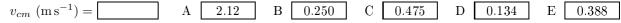
Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

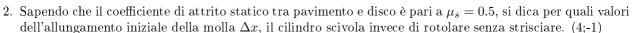
Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:

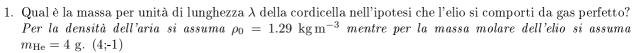

scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.

Si assumano i seguenti valori per le costanti che compaiono nei problemi:


intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

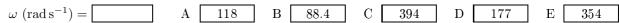

Problema 1

Un cilindro omogeneo di massa M=450 g e raggio R=9.10 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=150~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=2.60~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

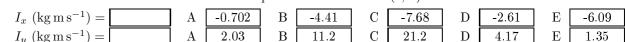

1.	Supponendo che il moto del	cilindro sia	ı di	rotolamento	puro,	si trov	la	\max sima	velocità	raggiunta	$_{ m dal}$
	centro di massa del cilindro.	(3;-1)									

Problema 2

Un palloncino sferico di massa m=27.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=25.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=2.90 m.



$$\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \quad \boxed{0.0125} \quad \mathrm{B} \quad \boxed{0.00547} \quad \mathrm{C} \quad \boxed{0.0161} \quad \mathrm{D} \quad \boxed{0.0232} \quad \mathrm{E} \quad \boxed{0.00215}$$

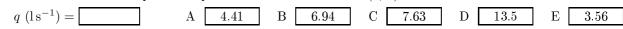

Problema 3

Un disco di massa M=250 g e raggio R=13.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=65.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4


Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 31.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 3.00 kg ciascuna poste nei tre vertici consecutivi A, B, C.

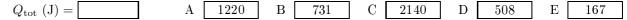
1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R=6.60 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r=1 cm. Si assuma per la densità dell'acqua il valore $\rho=1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.30 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=9.10 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=48.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-9.70^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=70.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 39.6 B 48.0 C 19.2 D 28.7 E 36.1

Problema 7

Un gas perfetto **biatomico** con n=2.10 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=1.70$ l e alla temperatura $T_i=140^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=29.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

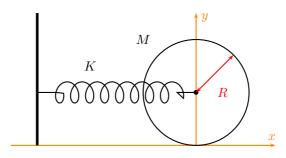
Nome	Cognome	Matricola num.

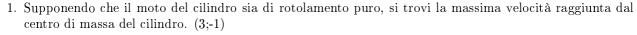
Compitino di Fisica Generale del 27/05/2009

Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.


Si assumano i seguenti valori per le costanti che compaiono nei problemi:

intensità campo gravitazionale $g = 9.8 \text{ m s}^{-2}$; costante dei gas $R = 8.36 \text{ J mol}^{-1} \text{ K}^{-1}$; la conversione 1 atm = $1.01 \times 10^5 \text{ Pa}$; e il calore specifico dell'acqua $c_{\text{H}_2\text{O}} = 1 \text{ cal g}^{-1} \text{ K}^{-1}$.

Problema 1

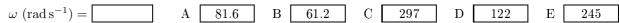
Un cilindro omogeneo di massa M=460 g e raggio R=7.90 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=160~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=1.10~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

 $v_{cm} \text{ (m s}^{-1}) =$ A 0.917 B 0.168 C 1.31 D 0.224 E 0.483

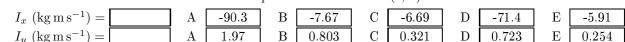
2. Sapendo che il coefficiente di attrito statico tra pavimento e disco è pari a $\mu_s = 0.5$, si dica per quali valori dell'allungamento iniziale della molla Δx , il cilindro scivola invece di rotolare senza strisciare. (4;-1)

Problema 2

Un palloncino sferico di massa m=26.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=28.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=4.70 m.


1. Qual è la massa per unità di lunghezza λ della cordicella nell'ipotesi che l'elio si comporti da gas perfetto? Per la densità dell'aria si assuma $\rho_0 = 1.29 \text{ kg m}^{-3}$ mentre per la massa molare dell'elio si assuma $m_{\text{He}} = 4 \text{ g.}$ (4;-1)

 $\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \quad \boxed{0.0133} \quad \mathrm{B} \quad \boxed{0.00119} \quad \mathrm{C} \quad \boxed{0.00149} \quad \mathrm{D} \quad \boxed{0.00208} \quad \mathrm{E} \quad \boxed{0.0260}$

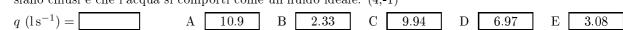

Problema 3

Un disco di massa M=350 g e raggio R=13.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=45.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4


Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 37.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 3.00 kg ciascuna poste nei tre vertici consecutivi A, B, C.

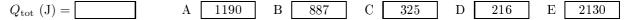
1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R = 7.20 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r = 1 cm. Si assuma per la densità dell'acqua il valore $\rho = 1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.50 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=11.0 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=49.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-14.0^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=70.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 26.3 B 35.0 C 39.8 D 17.5 E 49.0

Problema 7

Un gas perfetto **biatomico** con n=2.30 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=2.70$ l e alla temperatura $T_i=130^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=29.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

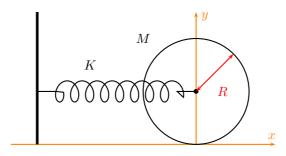
Nome	Cognome	$Matricola\ num.$

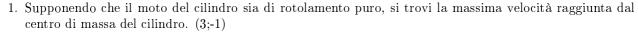
Compitino di Fisica Generale del 27/05/2009

Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.


Si assumano i seguenti valori per le costanti che compaiono nei problemi:

intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

Problema 1

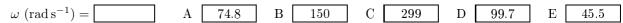
Un cilindro omogeneo di massa M=470 g e raggio R=7.80 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=140~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=2.70~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

 $v_{cm} \text{ (m s}^{-1}) =$ A 2.08 B 1.50 C 0.380 D 1.80 E 1.23

2. Sapendo che il coefficiente di attrito statico tra pavimento e disco è pari a $\mu_s = 0.5$, si dica per quali valori dell'allungamento iniziale della molla Δx , il cilindro scivola invece di rotolare senza strisciare. (4;-1)

Problema 2

Un palloncino sferico di massa m=17.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=28.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=4.20 m.



 $\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \quad \boxed{0.0256} \quad \mathrm{B} \quad \boxed{0.0479} \quad \mathrm{C} \quad \boxed{0.0303} \quad \mathrm{D} \quad \boxed{0.00660} \quad \mathrm{E} \quad \boxed{0.0171}$

Problema 3

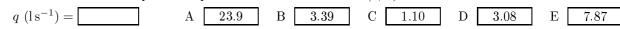
Un disco di massa M=340 g e raggio R=13.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=55.0$ m s⁻¹ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4

Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 19.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 2.80 kg ciascuna poste nei tre vertici consecutivi A, B, C.


1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

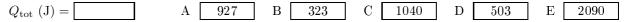
$$R (N) =$$
 A 121 B 186 C 22.0 D 26.0 E 82.3

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R=6.70 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r=1 cm. Si assuma per la densità dell'acqua il valore $\rho=1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=5.00 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=9.20 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=47.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-9.40^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=70.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 28.2 B 35.9 C 38.9 D 18.8 E 47.0

Problema 7

Un gas perfetto **biatomico** con n=2.30 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=1.20$ l e alla temperatura $T_i=130^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=31.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

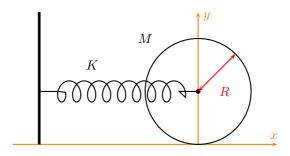
Nome	Cognome	$Matricola\ num.$

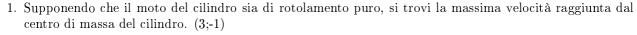
Compitino di Fisica Generale del 27/05/2009

Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.


Si assumano i seguenti valori per le costanti che compaiono nei problemi:

intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

Problema 1

Un cilindro omogeneo di massa M=370 g e raggio R=9.20 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=170~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=1.80~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

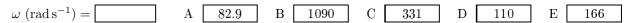
 $v_{cm} \text{ (m s}^{-1}) =$ A 0.382 B 0.800 C 0.315 D 3.84 E 1.73

2. Sapendo che il coefficiente di attrito statico tra pavimento e disco è pari a $\mu_s=0.5$, si dica per quali valori dell'allungamento iniziale della molla Δx , il cilindro scivola invece di rotolare senza strisciare. (4;-1)

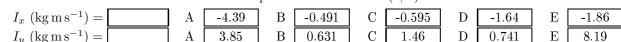
 $\Delta x \text{ (cm)} =$ A 5.35 B 1.78 C 3.20 D 5.86 E 2.51

Problema 2

Un palloncino sferico di massa m=32.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=26.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=2.50 m.


1. Qual è la massa per unità di lunghezza λ della cordicella nell'ipotesi che l'elio si comporti da gas perfetto? Per la densità dell'aria si assuma $\rho_0 = 1.29 \text{ kg m}^{-3}$ mentre per la massa molare dell'elio si assuma $m_{\text{He}} = 4 \text{ g.}$ (4;-1)

 $\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \quad \boxed{0.0729} \quad \mathrm{B} \quad \boxed{0.109} \quad \mathrm{C} \quad \boxed{0.178} \quad \mathrm{D} \quad \boxed{0.0123} \quad \mathrm{E} \quad \boxed{0.0156}$

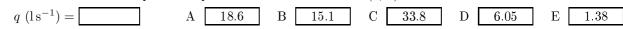

Problema 3

Un disco di massa M=260 g e raggio R=9.60 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=45.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4


Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M=36.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m=3.20 kg ciascuna poste nei tre vertici consecutivi A, B, C.

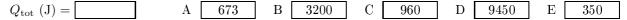
1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R=6.30 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r=1 cm. Si assuma per la densità dell'acqua il valore $\rho=1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.00 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=12.0 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=49.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-11.0^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=73.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 37.0 B 49.0 C 19.0 D 28.5 E 40.4

Problema 7

Un gas perfetto **biatomico** con n=1.10 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=2.30$ l e alla temperatura $T_i=120^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=25.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

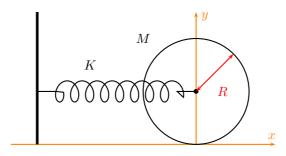
Nome	Cognome	$Matricola\ num.$

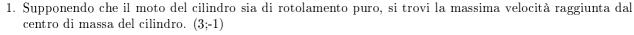
Compitino di Fisica Generale del 27/05/2009

Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:

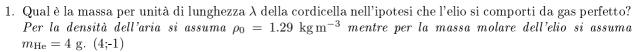

scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.


Si assumano i seguenti valori per le costanti che compaiono nei problemi:

intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

Problema 1

Un cilindro omogeneo di massa M=560 g e raggio R=9.50 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=130~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=1.70~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

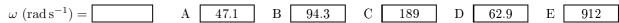

 $v_{cm} \text{ (m s}^{-1}) =$ A 0.926 B 0.553 C 1.46 D 1.16 E 0.211

2. Sapendo che il coefficiente di attrito statico tra pavimento e disco è pari a $\mu_s = 0.5$, si dica per quali valori dell'allungamento iniziale della molla Δx , il cilindro scivola invece di rotolare senza strisciare. (4;-1)

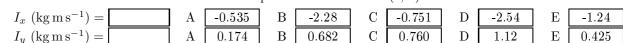
 $\Delta x \text{ (cm)} =$ A 1.27 B 6.33 C 12.8 D 3.52 E 2.13

Problema 2

Un palloncino sferico di massa m=23.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=28.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=3.30 m.



 $\lambda \ (\text{kg m}^{-1}) = \ \ \, \text{A} \ \ \, 0.0226 \ \ \, \text{B} \ \ \, 0.00838 \ \ \, \text{C} \ \ \, 0.00234 \ \ \, \text{D} \ \ \, 0.0199 \ \ \, \text{E} \ \ \, 0.0167$


Problema 3

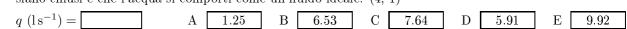
Un disco di massa M=190 g e raggio R=12.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=32.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4

Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 21.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 3.10 kg ciascuna poste nei tre vertici consecutivi A, B, C.


1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

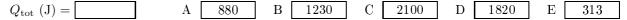
$$R ext{ (N)} =$$
 A $ext{ 302}$ B $ext{ 239}$ C $ext{ 91.1}$ D $ext{ 133}$ E $ext{ 206}$

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R = 5.00 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r = 1 cm. Si assuma per la densità dell'acqua il valore $\rho = 1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.30 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=12.0 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=49.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-9.00^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=72.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 30.0 B 40.6 C 49.0 D 20.0 E 37.3

Problema 7

Un gas perfetto **biatomico** con n=1.60 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=2.30$ l e alla temperatura $T_i=110^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=26.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

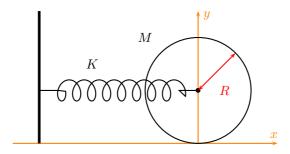
Nome	Cognome	$Matricola\ num.$

Compitino di Fisica Generale del 27/05/2009

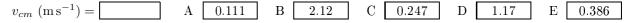
Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

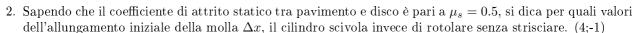
Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.

Si assumano i seguenti valori per le costanti che compaiono nei problemi:


intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

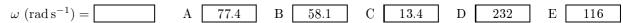

Problema 1

Un cilindro omogeneo di massa M=490 g e raggio R=6.40 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=140~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=2.80~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

1.	Supponendo che il moto de	el cilindro	sia di	rotolamento	puro,	si trovi	la	\max	velocità	raggiunta	da
	centro di massa del cilindro	(3;-1)									

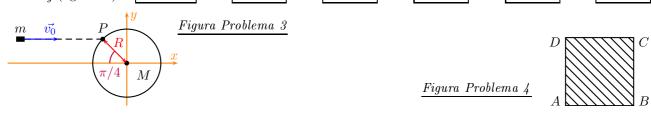
Problema 2

Un palloncino sferico di massa m=27.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=28.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=4.30 m.



$$\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \ \boxed{0.00523} \quad \mathrm{B} \ \boxed{0.0143} \quad \mathrm{C} \ \boxed{0.0105} \quad \mathrm{D} \ \boxed{0.00113} \quad \mathrm{E} \ \boxed{0.0236}$$

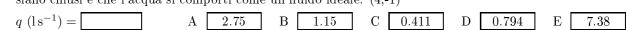

Problema 3


Un disco di massa M=190 g e raggio R=14.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=46.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4


Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 18.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 3.20 kg ciascuna poste nei tre vertici consecutivi A, B, C.

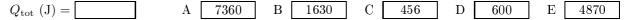
1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R=6.50 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r=1 cm. Si assuma per la densità dell'acqua il valore $\rho=1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.80 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=11.0 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a = 50.0$ °C. Un cubo di marmo di capacità termica $C_m = 200 \text{ cal K}^{-1}$ a temperatura $T_m = -10.0$ °C viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r = 50 \text{ cal K}^{-1}$ a temperatura $T_r = 72.0$ °C.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 41.3 B 50.0 C 20.0 D 30.0 E 37.3

Problema 7

Un gas perfetto **biatomico** con n=2.30 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=1.60$ l e alla temperatura $T_i=110^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=33.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

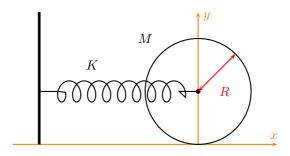
Nome	Cognome	$Matricola\ num.$

Compitino di Fisica Generale del 27/05/2009

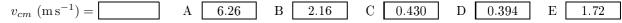
Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.

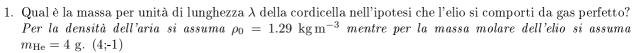
Si assumano i seguenti valori per le costanti che compaiono nei problemi:


intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

Problema 1

Un cilindro omogeneo di massa M=470 g e raggio R=5.00 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=130~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=2.90$ cm. Ad un dato istante, il sistema viene lasciato libero di muoversi.

1.	Supponendo che il moto del	$\operatorname{cilindro}$	sia di	rotolamento	puro,	si trovi	la massima	velocità	raggiunta	$_{ m dal}$
	centro di massa del cilindro.	(3:-1)								



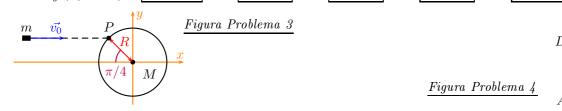
2. Sapendo che il coefficiente di attrito statico tra pavimento e disco è pari a $\mu_s = 0.5$, si dica per quali valori dell'allungamento iniziale della molla Δx , il cilindro scivola invece di rotolare senza strisciare. (4;-1)

Problema 2

Un palloncino sferico di massa m=31.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=27.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=3.90 m.

$$\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \quad \boxed{0.143} \quad \mathrm{B} \quad \boxed{0.112} \quad \mathrm{C} \quad \boxed{0.0505} \quad \mathrm{D} \quad \boxed{0.0124} \quad \mathrm{E} \quad \boxed{0.0364}$$

Problema 3


Un disco di massa M=250 g e raggio R=12.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=34.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

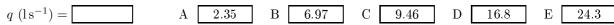
1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

 $\omega \; (\mathrm{rad} \, \mathrm{s}^{-1}) = \boxed{ \qquad \qquad} \mathrm{A} \quad \boxed{20.9} \quad \mathrm{B} \quad \boxed{200} \quad \mathrm{C} \quad \boxed{100} \quad \mathrm{D} \quad \boxed{50.1} \quad \mathrm{E} \quad \boxed{66.8}$

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

 $I_x \; (\text{kg m s}^{-1}) =$ -2.36В \mathbf{C} -3.74D -0.703Ε -1.77-3.19C $I_u \, (\text{kg m s}^{-1}) =$ D Ε Α 0.197В 1.80 2.02 1.06 0.151

Problema 4


Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 44.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 2.90 kg ciascuna poste nei tre vertici consecutivi A, B, C.

1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R = 7.30 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r = 1 cm. Si assuma per la densità dell'acqua il valore $\rho = 1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.60 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=12.0 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6

Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=49.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-11.0^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=71.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 40.3 B 49.0 C 19.0 D 28.5 E 36.3

Problema 7

Un gas perfetto **biatomico** con n=1.10 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=1.30$ l e alla temperatura $T_i=100^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=25.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

$$Q_{\text{tot}} (J) =$$
 A 197 B 514 C 155 D 758 E 1640

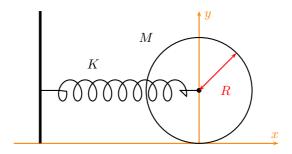
Nome	Cognome	$Matricola\ num.$

Compitino di Fisica Generale del 27/05/2009

Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

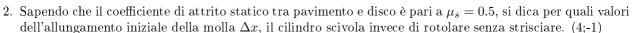
Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:

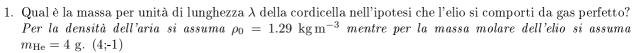

scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.

Si assumano i seguenti valori per le costanti che compaiono nei problemi:

intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

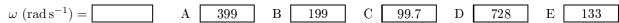

Problema 1

Un cilindro omogeneo di massa M=690 g e raggio R=4.60 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=170~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=2.50~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

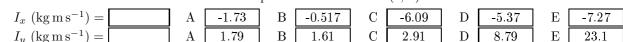

1.	Supponendo che il moto de	el cilindro	sia di	rotolamento	puro,	si trovi	la	massima	velocità	raggiunta	da
	centro di massa del cilindro	. (3;-1)									

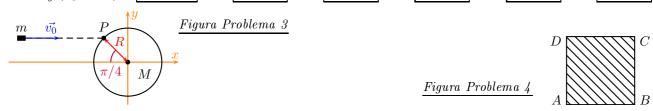
Problema 2

Un palloncino sferico di massa m=24.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=27.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=4.20 m.



$$\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \quad \boxed{0.0917} \quad \mathrm{B} \quad \boxed{0.0581} \quad \mathrm{C} \quad \boxed{0.207} \quad \mathrm{D} \quad \boxed{0.0132} \quad \mathrm{E} \quad \boxed{0.154}$$


Problema 3

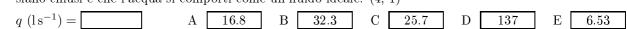

Un disco di massa M=270 g e raggio R=9.40 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=53.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4

Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 31.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 2.70 kg ciascuna poste nei tre vertici consecutivi A, B, C.


1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

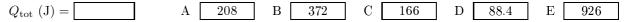
$$R (N) =$$
 A 12.7 B 34.3 C 79.4 D 178 E 304

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R=6.20 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r=1 cm. Si assuma per la densità dell'acqua il valore $\rho=1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.30 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=12.0 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=47.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-11.0^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=70.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 35.3 B 38.6 C 18.0 D 27.0 E 47.0

Problema 7

Un gas perfetto **biatomico** con n=1.20 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=1.000$ l e alla temperatura $T_i=110^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=26.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

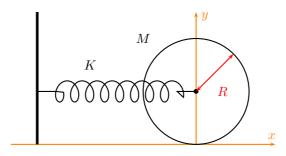
Nome		Cognome	$Matricola\ num.$	

Compitino di Fisica Generale del 27/05/2009

Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.

Si assumano i seguenti valori per le costanti che compaiono nei problemi:

intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

Problema 1

Un cilindro omogeneo di massa M=410 g e raggio R=7.90 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=110~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=2.90~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

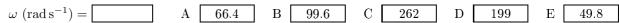
1.	Supponendo che il moto del	$\operatorname{cilindro}$	sia di	rotolamento	puro,	si trovi	la	\max sima	velocità	raggiunta	dal
	centro di massa del cilindro.	(3;-1)									

 $v_{cm} \text{ (m s}^{-1}) =$ A 0.388 B 1.30 C 2.12 D 0.683 E 0.248

2. Sapendo che il coefficiente di attrito statico tra pavimento e disco è pari a $\mu_s = 0.5$, si dica per quali valori dell'allungamento iniziale della molla Δx , il cilindro scivola invece di rotolare senza strisciare. (4;-1)

Problema 2

Un palloncino sferico di massa m=29.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=24.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=2.40 m.



 $\lambda \text{ (kg m}^{-1}) = \begin{bmatrix} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$

Problema 3

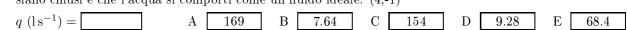
Un disco di massa M=240 g e raggio R=11.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=31.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4

Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 15.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 3.30 kg ciascuna poste nei tre vertici consecutivi A, B, C.


1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

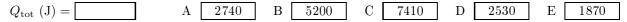
$$R (N) =$$
 A 106 B 386 C 24.8 D 97.0 E 147

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R = 7.60 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r = 1 cm. Si assuma per la densità dell'acqua il valore $\rho = 1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.90 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=10.0 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=49.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-11.0^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=72.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 36.7 B 40.3 C 19.0 D 28.5 E 49.0

Problema 7

Un gas perfetto **biatomico** con n=1.90 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=1.10$ l e alla temperatura $T_i=140^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=33.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

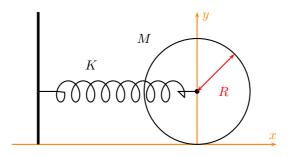
Nome	Cognome		$Matricola\ num.$	

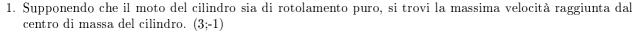
Compitino di Fisica Generale del 27/05/2009

Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:

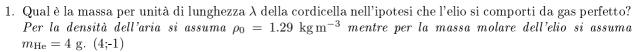

scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.


Si assumano i seguenti valori per le costanti che compaiono nei problemi:

intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

Problema 1

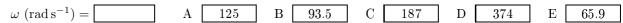
Un cilindro omogeneo di massa M=540 g e raggio R=8.90 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=100~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=1.90~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.


 $v_{cm} \text{ (m s}^{-1}) =$ A 0.211 B 1.16 C 0.163 D 0.0376 E 0.0176

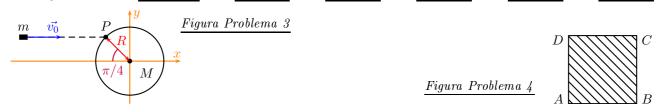
2. Sapendo che il coefficiente di attrito statico tra pavimento e disco è pari a $\mu_s=0.5$, si dica per quali valori dell'allungamento iniziale della molla Δx , il cilindro scivola invece di rotolare senza strisciare. (4;-1)

 $\Delta x \text{ (cm)} =$ A 5.71 B 7.94 C 4.41 D 31.5 E 21.3

Problema 2


Un palloncino sferico di massa m=11.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=29.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=4.10 m.

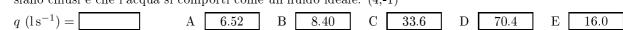
Problema 3


Un disco di massa M=240 g e raggio R=8.70 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=46.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4


Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 29.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 2.70 kg ciascuna poste nei tre vertici consecutivi A, B, C.

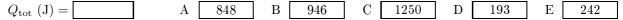
1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R=6.00 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r=1 cm. Si assuma per la densità dell'acqua il valore $\rho=1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.10 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=10.0 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=47.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-13.0^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=71.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 25.5 B 35.0 C 38.4 D 17.0 E 47.0

Problema 7

Un gas perfetto **biatomico** con n=1.30 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=1.60$ l e alla temperatura $T_i=100^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=29.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

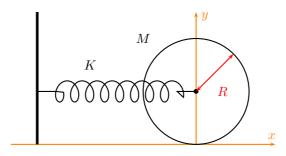
Nome		Cognome	$Matricola\ num.$	

Compitino di Fisica Generale del 27/05/2009

Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:

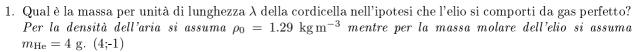

scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.


Si assumano i seguenti valori per le costanti che compaiono nei problemi:

intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

Problema 1

Un cilindro omogeneo di massa M=620 g e raggio R=9.30 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=190~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=3.10~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

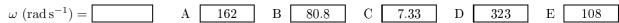


 $v_{cm} \text{ (m s}^{-1}) =$ A 0.443 B 0.172 C 0.0597 D 0.0351 E 2.43

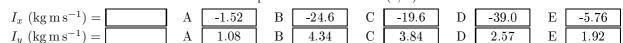
2. Sapendo che il coefficiente di attrito statico tra pavimento e disco è pari a $\mu_s = 0.5$, si dica per quali valori dell'allungamento iniziale della molla Δx , il cilindro scivola invece di rotolare senza strisciare. (4;-1)

Problema 2

Un palloncino sferico di massa m=29.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=27.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=2.40 m.



 $\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \quad \boxed{0.0391} \quad \mathrm{B} \quad \boxed{0.0505} \quad \mathrm{C} \quad \boxed{0.191} \quad \mathrm{D} \quad \boxed{0.0210} \quad \mathrm{E} \quad \boxed{0.0124}$

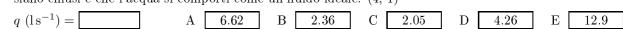

Problema 3

Un disco di massa M=240 g e raggio R=14.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=64.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4


Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 39.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 2.80 kg ciascuna poste nei tre vertici consecutivi A, B, C.

1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R = 7.70 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r = 1 cm. Si assuma per la densità dell'acqua il valore $\rho = 1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.10 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=9.30 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6

Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=47.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-14.0^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=73.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 24.8 B 35.3 C 47.0 D 38.3 E 16.5

Problema 7

Un gas perfetto **biatomico** con n=2.00 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=1.000$ l e alla temperatura $T_i=130^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=27.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

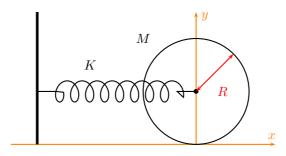
Nome	Cognome	$Matricola\ num.$

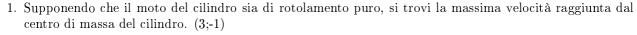
Compitino di Fisica Generale del 27/05/2009

Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.


Si assumano i seguenti valori per le costanti che compaiono nei problemi:

intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

Problema 1

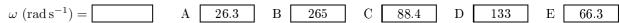
Un cilindro omogeneo di massa M=580 g e raggio R=4.00 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=150~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=3.10~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

 $v_{cm} \text{ (m s}^{-1}) =$ A 2.23 B 0.254 C 0.366 D 0.833 E 0.407

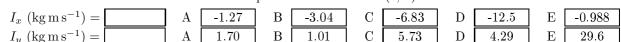
2. Sapendo che il coefficiente di attrito statico tra pavimento e disco è pari a $\mu_s = 0.5$, si dica per quali valori dell'allungamento iniziale della molla Δx , il cilindro scivola invece di rotolare senza strisciare. (4;-1)

Problema 2

Un palloncino sferico di massa m=13.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=29.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=2.90 m.



 $\lambda \ (\mathrm{kg} \, \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \quad \boxed{0.0437} \quad \mathrm{B} \quad \boxed{0.00672} \quad \mathrm{C} \quad \boxed{0.00585} \quad \mathrm{D} \quad \boxed{0.0661} \quad \mathrm{E} \quad \boxed{0.0295}$

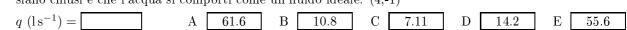

Problema 3

Un disco di massa M=180 g e raggio R=12.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=45.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4


Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 44.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 2.70 kg ciascuna poste nei tre vertici consecutivi A, B, C.

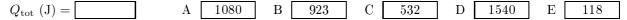
1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R = 5.10 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r = 1 cm. Si assuma per la densità dell'acqua il valore $\rho = 1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.60 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=11.0 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=49.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-13.0^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=75.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 49.0 B 18.0 C 27.0 D 37.0 E 40.1

Problema 7

Un gas perfetto **biatomico** con n=2.20 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=2.60$ l e alla temperatura $T_i=110^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=34.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

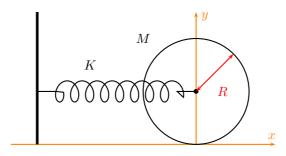
Nome	Cognome	$Matricola\ num.$

Compitino di Fisica Generale del 27/05/2009

Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

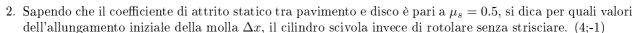
Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.

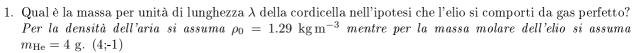
Si assumano i seguenti valori per le costanti che compaiono nei problemi:

intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.


Problema 1

Un cilindro omogeneo di massa M=610 g e raggio R=5.10 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=190~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=3.40~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

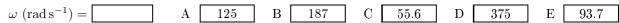
1.	Supponendo che il moto del	cilindro sia	ı di rotolamento	puro, si tre	ovi la massima	velocità ragg	giunta da
	centro di massa del cilindro.	(3;-1)					



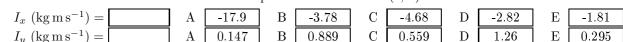
$$\Delta x \text{ (cm)} = \begin{bmatrix} A & 4.72 & B & 7.52 & C & 2.62 & D & 27.0 & E & 19.6 \end{bmatrix}$$

Problema 2

Un palloncino sferico di massa m=27.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=25.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=2.70 m.



$$\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \ \boxed{0.00197} \quad \mathrm{B} \ \boxed{0.00742} \quad \mathrm{C} \ \boxed{0.0134} \quad \mathrm{D} \ \boxed{0.00213} \quad \mathrm{E} \ \boxed{0.0165}$$

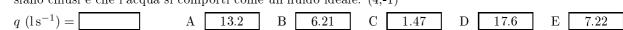

Problema 3

Un disco di massa M=190 g e raggio R=10.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=53.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4


Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 13.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 2.60 kg ciascuna poste nei tre vertici consecutivi A, B, C.

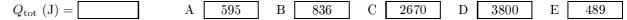
1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R = 5.80 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r = 1 cm. Si assuma per la densità dell'acqua il valore $\rho = 1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.10 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=12.0 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a = 50.0$ °C. Un cubo di marmo di capacità termica $C_m = 200 \text{ cal K}^{-1}$ a temperatura $T_m = -11.0$ °C viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r = 50 \text{ cal K}^{-1}$ a temperatura $T_r = 75.0$ °C.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 29.3 B 38.0 C 50.0 D 41.2 E 19.5

Problema 7

Un gas perfetto **biatomico** con n=2.80 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=1.30$ l e alla temperatura $T_i=140^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=36.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

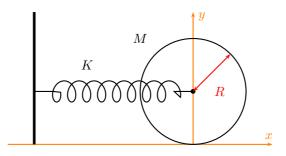
Nome	Cognome	$Matricola\ num.$

Compitino di Fisica Generale del 27/05/2009

Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.


Si assumano i seguenti valori per le costanti che compaiono nei problemi:

intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

Problema 1

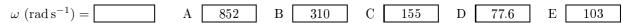
Un cilindro omogeneo di massa M=410 g e raggio R=6.50 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=120~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=1.90~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

 $v_{cm} \text{ (m s}^{-1}) =$ A 0.564 B 0.0891 C 0.328 D 1.45 E 0.265

2. Sapendo che il coefficiente di attrito statico tra pavimento e disco è pari a $\mu_s = 0.5$, si dica per quali valori dell'allungamento iniziale della molla Δx , il cilindro scivola invece di rotolare senza strisciare. (4;-1)

Problema 2

Un palloncino sferico di massa m=21.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=25.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=3.60 m.



 $\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \quad \boxed{0.0281} \quad \mathrm{B} \quad \boxed{0.00809} \quad \mathrm{C} \quad \boxed{0.0117} \quad \mathrm{D} \quad \boxed{0.0484} \quad \mathrm{E} \quad \boxed{0.00978}$

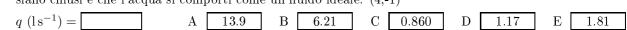
Problema 3

Un disco di massa M=170 g e raggio R=9.80 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=43.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4


Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 45.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 3.40 kg ciascuna poste nei tre vertici consecutivi A, B, C.

1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R = 7.90 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r = 1 cm. Si assuma per la densità dell'acqua il valore $\rho = 1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.00 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=11.0 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6

Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a = 50.0$ °C. Un cubo di marmo di capacità termica $C_m = 200 \text{ cal K}^{-1}$ a temperatura $T_m = -12.0$ °C viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r = 50 \text{ cal K}^{-1}$ a temperatura $T_r = 75.0$ °C.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 50.0 B 19.0 C 41.1 D 37.7 E 28.5

Problema 7

Un gas perfetto **biatomico** con n=1.40 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=1.30$ l e alla temperatura $T_i=100^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=35.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

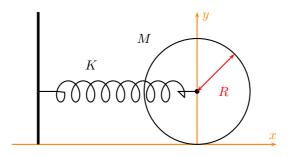
Nome	Cognome	$Matricola\ num.$

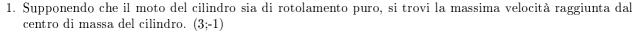
Compitino di Fisica Generale del 27/05/2009

Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.


Si assumano i seguenti valori per le costanti che compaiono nei problemi:

intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

Problema 1

Un cilindro omogeneo di massa M=530 g e raggio R=9.40 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=130~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=2.70~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

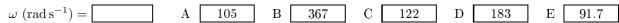
 $v_{cm} \text{ (m s}^{-1}) =$ A 0.0629 B 0.0301 C 0.345 D 1.89 E 0.513

2. Sapendo che il coefficiente di attrito statico tra pavimento e disco è pari a $\mu_s=0.5$, si dica per quali valori dell'allungamento iniziale della molla Δx , il cilindro scivola invece di rotolare senza strisciare. (4;-1)

 $\Delta x \text{ (cm)} =$ A 59.3 B 5.99 C 53.5 D 3.33 E 27.5

Problema 2

Un palloncino sferico di massa m=15.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=28.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=3.90 m.



 $\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \ \boxed{0.00606} \quad \mathrm{B} \ \boxed{0.0155} \quad \mathrm{C} \ \boxed{0.0110} \quad \mathrm{D} \ \boxed{0.0563} \quad \mathrm{E} \ \boxed{0.0189}$

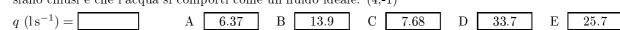
Problema 3

Un disco di massa M=320 g e raggio R=8.10 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=42.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4


Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M=40.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m=2.60 kg ciascuna poste nei tre vertici consecutivi A, B, C.

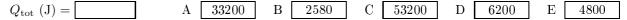
1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R = 7.70 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r = 1 cm. Si assuma per la densità dell'acqua il valore $\rho = 1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.10 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=11.0 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=47.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-10.0^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=70.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 35.7 B 47.0 C 18.5 D 38.8 E 27.8

Problema 7

Un gas perfetto **biatomico** con n=2.60 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=2.30$ l e alla temperatura $T_i=140^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=32.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

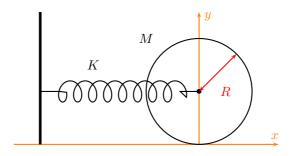
Nome	Cognome	Matricola num.

Compitino di Fisica Generale del 27/05/2009

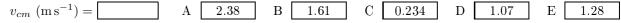
Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

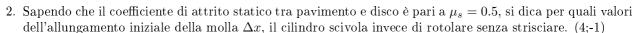
Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.

Si assumano i seguenti valori per le costanti che compaiono nei problemi:


intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.


Problema 1

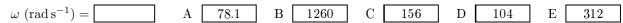
Un cilindro omogeneo di massa M=660 g e raggio R=4.20 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=150~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=1.90~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

1.	Supponendo che il moto del	cilindro sia	ı di	rotolamento	puro,	si trov	la	\max sima	velocità	raggiunta	$_{ m dal}$
	centro di massa del cilindro.	(3;-1)									

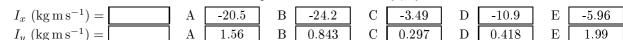
$$\Delta x \text{ (cm)} =$$
 A 0.708 B 6.47 C 5.23 D 3.59 E 10.2

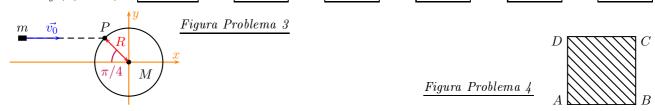
Problema 2

Un palloncino sferico di massa m=21.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=27.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=2.10 m.



$$\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \quad \boxed{0.0811} \quad \mathrm{B} \quad \boxed{0.0279} \quad \mathrm{C} \quad \boxed{0.0161} \quad \mathrm{D} \quad \boxed{0.0514} \quad \mathrm{E} \quad \boxed{0.0431}$$


Problema 3


Un disco di massa M=300 g e raggio R=12.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=53.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4

Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 32.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 3.30 kg ciascuna poste nei tre vertici consecutivi A, B, C.

1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

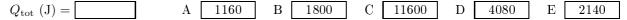
$$R (N) =$$
 A 97.0 B 314 C 2660 D 741 E 189

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R=6.50 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r=1 cm. Si assuma per la densità dell'acqua il valore $\rho=1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.10 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=10.0 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=48.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-12.0^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=71.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 39.3 B 27.0 C 35.7 D 48.0 E 18.0

Problema 7

Un gas perfetto **biatomico** con n=1.50 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=1.80$ l e alla temperatura $T_i=110^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=26.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

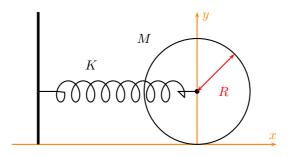
Nome	Cognome	$Matricola\ num.$

Compitino di Fisica Generale del 27/05/2009

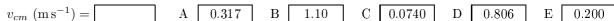
Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:

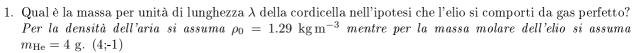

scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.

Si assumano i seguenti valori per le costanti che compaiono nei problemi:


intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

Problema 1

Un cilindro omogeneo di massa M=490 g e raggio R=7.50 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=150~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=1.40~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.


1.	Supponendo che il moto del	cilindro sia	ı di rotolamento	puro, si tre	ovi la massima	velocità ragg	giunta da
	centro di massa del cilindro.	(3;-1)					

2. Sapendo che il coefficiente di attrito statico tra pavimento e disco è pari a $\mu_s = 0.5$, si dica per quali valori dell'allungamento iniziale della molla Δx , il cilindro scivola invece di rotolare senza strisciare. (4;-1)

Problema 2

Un palloncino sferico di massa m=32.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=28.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=4.70 m.

$$\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \quad \boxed{0.0121} \quad \mathrm{B} \quad \boxed{0.00247} \quad \mathrm{C} \quad \boxed{0.00324} \quad \mathrm{D} \quad \boxed{0.00404} \quad \mathrm{E} \quad \boxed{0.00700}$$

Problema 3

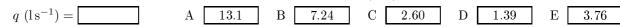
Un disco di massa M=220 g e raggio R=13.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=43.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4

Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M=32.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m=2.80 kg ciascuna poste nei tre vertici consecutivi A, B, C.


1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

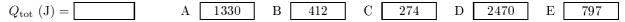
$$R (N) =$$
 A 184 B 314 C 3590 D 4270 E 82.3

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R=6.40 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r=1 cm. Si assuma per la densità dell'acqua il valore $\rho=1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.60 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=10.0 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=49.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-14.0^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=73.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 39.9 B 17.5 C 26.3 D 36.0 E 49.0

Problema 7

Un gas perfetto **biatomico** con n=2.40 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=2.60$ l e alla temperatura $T_i=140^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=28.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

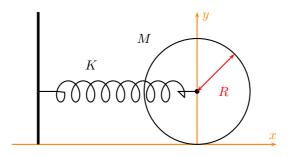
Nome	Cognome	$Matricola\ num.$

Compitino di Fisica Generale del 27/05/2009

Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.


Si assumano i seguenti valori per le costanti che compaiono nei problemi:

intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

Problema 1

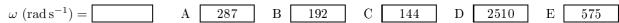
Un cilindro omogeneo di massa M=410 g e raggio R=9.50 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=130~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=2.90~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

 $v_{cm} \text{ (m s}^{-1}) =$ A 1.40 B 0.579 C 0.422 D 2.31 E 0.129

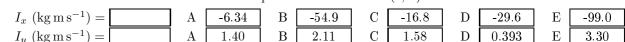
2. Sapendo che il coefficiente di attrito statico tra pavimento e disco è pari a $\mu_s = 0.5$, si dica per quali valori dell'allungamento iniziale della molla Δx , il cilindro scivola invece di rotolare senza strisciare. (4;-1)

Problema 2

Un palloncino sferico di massa m=27.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=29.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=4.50 m.



 $\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \quad \boxed{0.0137} \quad \mathrm{B} \quad \boxed{0.0178} \quad \mathrm{C} \quad \boxed{0.00883} \quad \mathrm{D} \quad \boxed{0.0127} \quad \mathrm{E} \quad \boxed{0.0159}$

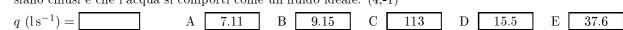

Problema 3

Un disco di massa M=260 g e raggio R=8.00 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=65.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4


Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 28.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 3.40 kg ciascuna poste nei tre vertici consecutivi A, B, C.

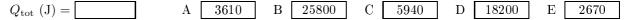
1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R=6.20 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r=1 cm. Si assuma per la densità dell'acqua il valore $\rho=1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.70 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=12.0 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=48.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-14.0^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=74.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 17.0 B 25.5 C 36.0 D 48.0 E 39.1

Problema 7

Un gas perfetto **biatomico** con n=2.60 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=1.70$ l e alla temperatura $T_i=150^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=38.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

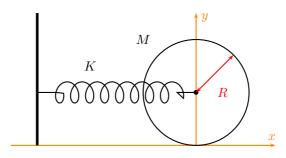
Nome	Cognome	$Matricola\ num.$

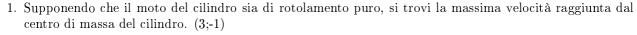
Compitino di Fisica Generale del 27/05/2009

Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:

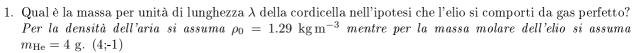

scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.


Si assumano i seguenti valori per le costanti che compaiono nei problemi:

intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

Problema 1

Un cilindro omogeneo di massa M=410 g e raggio R=8.90 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=180~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=2.40~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

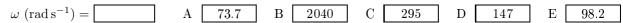


 $v_{cm} \text{ (m s}^{-1}) =$ A 1.72 B 2.25 C 0.123 D 0.314 E 0.411

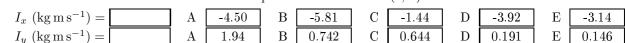
2. Sapendo che il coefficiente di attrito statico tra pavimento e disco è pari a $\mu_s=0.5$, si dica per quali valori dell'allungamento iniziale della molla Δx , il cilindro scivola invece di rotolare senza strisciare. (4;-1)

Problema 2

Un palloncino sferico di massa m=10.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=27.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=3.20 m.



 $\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \quad \boxed{0.0217} \quad \mathrm{B} \quad \boxed{0.00400} \quad \mathrm{C} \quad \boxed{0.0548} \quad \mathrm{D} \quad \boxed{0.0484} \quad \mathrm{E} \quad \boxed{0.0263}$


Problema 3

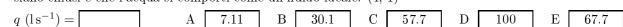
Un disco di massa M=310 g e raggio R=12.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=50.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4

Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M=46.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m=2.50 kg ciascuna poste nei tre vertici consecutivi A, B, C.


1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

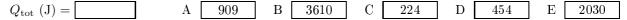
$$R ext{ (N)} =$$
 A 250 B 204 C 798 D 73.5 E 451

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R = 7.70 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r = 1 cm. Si assuma per la densità dell'acqua il valore $\rho = 1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.70 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=12.0 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a = 50.0$ °C. Un cubo di marmo di capacità termica $C_m = 200 \text{ cal K}^{-1}$ a temperatura $T_m = -9.20$ °C viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r = 50 \text{ cal K}^{-1}$ a temperatura $T_r = 73.0$ °C.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 41.4 B 37.9 C 50.0 D 20.4 E 30.6

Problema 7

Un gas perfetto **biatomico** con n=1.000 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=1.000$ l e alla temperatura $T_i=130^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=31.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

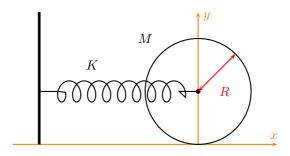
Nome	Cognome	$Matricola\ num.$

Compitino di Fisica Generale del 27/05/2009

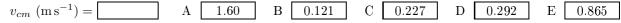
Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

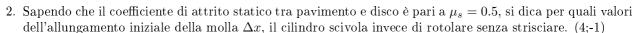
Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.

Si assumano i seguenti valori per le costanti che compaiono nei problemi:


intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

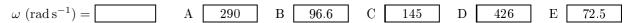

Problema 1

Un cilindro omogeneo di massa M=480 g e raggio R=8.50 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=190~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=1.80~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

1.	Supponendo che il moto de	el cilindro	sia di	rotolamento	puro,	si trovi	la	\max	velocità	raggiunta	da
	centro di massa del cilindro	(3;-1)									

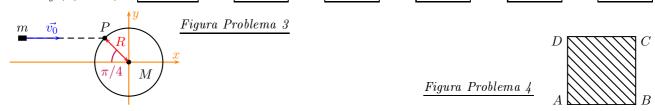
Problema 2

Un palloncino sferico di massa m=31.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=28.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=2.60 m.



$$\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \quad \boxed{0.0108} \quad \mathrm{B} \quad \boxed{0.0345} \quad \mathrm{C} \quad \boxed{0.0222} \quad \mathrm{D} \quad \boxed{0.0495} \quad \mathrm{E} \quad \boxed{0.0433}$$

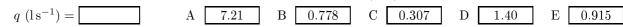
Problema 3


Un disco di massa M=170 g e raggio R=10.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=41.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4


Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 47.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 3.50 kg ciascuna poste nei tre vertici consecutivi A, B, C.

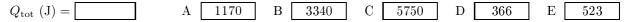
1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R=6.10 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r=1 cm. Si assuma per la densità dell'acqua il valore $\rho=1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.50 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=9.20 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=45.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-14.0^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=70.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 45.0 B 36.6 C 23.3 D 33.7 E 15.5

Problema 7

Un gas perfetto **biatomico** con n=1.70 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=1.20$ l e alla temperatura $T_i=110^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=35.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

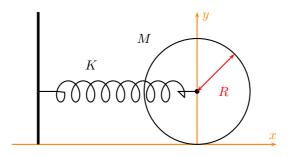
Nome	Cognome	$Matricola\ num.$

Compitino di Fisica Generale del 27/05/2009

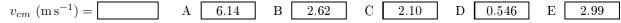
Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

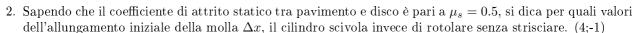
Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:

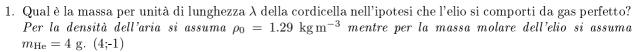

scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.

Si assumano i seguenti valori per le costanti che compaiono nei problemi:


intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

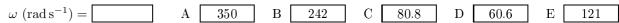

Problema 1

Un cilindro omogeneo di massa M=520 g e raggio R=6.70 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=190~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=3.50~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.


1.	Supponendo che il moto de	el cilindro	sia di	rotolamento	puro,	si trovi	la	\max	velocità	raggiunta	da
	centro di massa del cilindro	(3;-1)									

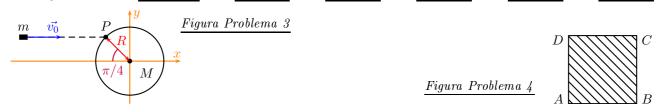
Problema 2

Un palloncino sferico di massa m=31.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=29.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=2.90 m.



$$\lambda \; (\mathrm{kg} \, \mathrm{m}^{-1}) =$$
 A 0.00572 B 0.00376 C 0.0478 D 0.0196 E 0.0233

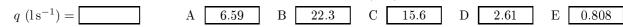
Problema 3


Un disco di massa M=300 g e raggio R=14.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=48.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4


Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 42.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 3.00 kg ciascuna poste nei tre vertici consecutivi A, B, C.

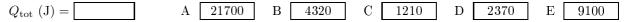
1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R=6.90 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r=1 cm. Si assuma per la densità dell'acqua il valore $\rho=1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.10 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=9.50 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=47.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-13.0^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=70.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 47.0 B 38.3 C 25.5 D 34.7 E 17.0

Problema 7

Un gas perfetto **biatomico** con n=2.80 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=2.60$ l e alla temperatura $T_i=120^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=28.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

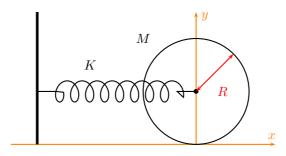
Nome	Cognome	$Matricola\ num.$

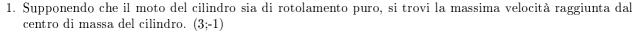
Compitino di Fisica Generale del 27/05/2009

Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.


Si assumano i seguenti valori per le costanti che compaiono nei problemi:

intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

Problema 1

Un cilindro omogeneo di massa M=450 g e raggio R=9.80 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=190~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=2.40~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

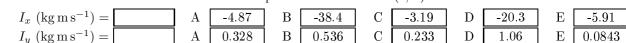
 $v_{cm} \text{ (m s}^{-1}) =$ A 1.72 B 2.59 C 0.721 D 2.21 E 0.403

2. Sapendo che il coefficiente di attrito statico tra pavimento e disco è pari a $\mu_s=0.5$, si dica per quali valori dell'allungamento iniziale della molla Δx , il cilindro scivola invece di rotolare senza strisciare. (4;-1)

Problema 2

Un palloncino sferico di massa m=12.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=27.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=3.80 m.

 $\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \quad \boxed{0.0178} \quad \mathrm{B} \quad \boxed{0.00272} \quad \mathrm{C} \quad \boxed{0.0333} \quad \mathrm{D} \quad \boxed{0.00349} \quad \mathrm{E} \quad \boxed{0.00464}$

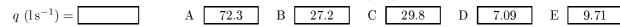

Problema 3

Un disco di massa M=170 g e raggio R=10.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=50.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4


Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 11.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 3.50 kg ciascuna poste nei tre vertici consecutivi A, B, C.

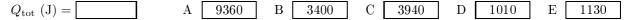
1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R=6.70 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r=1 cm. Si assuma per la densità dell'acqua il valore $\rho=1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.40 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=9.10 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=47.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-13.0^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=71.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 38.4 B 17.0 C 25.5 D 35.0 E 47.0

Problema 7

Un gas perfetto **biatomico** con n=1.50 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=2.70$ l e alla temperatura $T_i=100^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=27.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

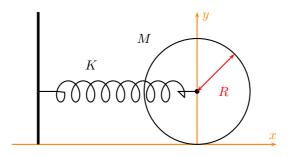
Nome	Cognome	$Matricola\ num.$

Compitino di Fisica Generale del 27/05/2009

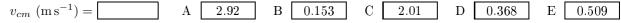
Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

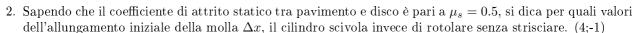
Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.

Si assumano i seguenti valori per le costanti che compaiono nei problemi:

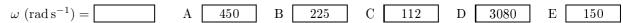

intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.


Problema 1

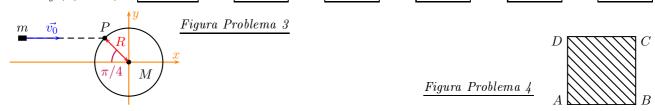
Un cilindro omogeneo di massa M=570 g e raggio R=4.50 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=100~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=3.40~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

1.	Supponendo che il moto de	el cilindro	sia di	rotolamento	puro,	si trovi	la	\max	velocità	raggiunta	da
	centro di massa del cilindro	(3;-1)									

Problema 2


Un palloncino sferico di massa m=28.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=27.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=2.90 m.

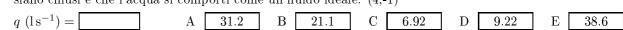
Problema 3


Un disco di massa M=280 g e raggio R=11.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=70.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4


Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 36.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 3.40 kg ciascuna poste nei tre vertici consecutivi A, B, C.

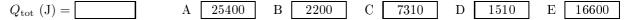
1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R = 5.00 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r = 1 cm. Si assuma per la densità dell'acqua il valore $\rho = 1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.30 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=9.30 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a = 50.0$ °C. Un cubo di marmo di capacità termica $C_m = 200 \text{ cal K}^{-1}$ a temperatura $T_m = -12.0$ °C viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r = 50 \text{ cal K}^{-1}$ a temperatura $T_r = 73.0$ °C.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 41.0 B 28.5 C 37.0 D 50.0 E 19.0

Problema 7

Un gas perfetto **biatomico** con n=1.60 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=1.70$ l e alla temperatura $T_i=130^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=27.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

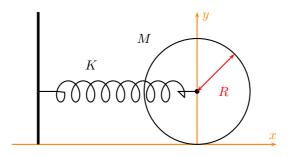
Nome	Cognome	$Matricola\ num.$

Compitino di Fisica Generale del 27/05/2009

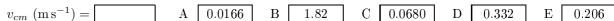
Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

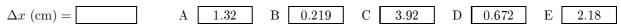
Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.


Si assumano i seguenti valori per le costanti che compaiono nei problemi:


intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

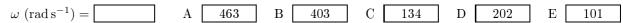
Problema 1


Un cilindro omogeneo di massa M=480 g e raggio R=5.60 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=180~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=2.10~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

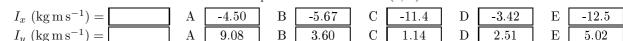
2. Sapendo che il coefficiente di attrito statico tra pavimento e disco è pari a $\mu_s = 0.5$, si dica per quali valori dell'allungamento iniziale della molla Δx , il cilindro scivola invece di rotolare senza strisciare. (4;-1)

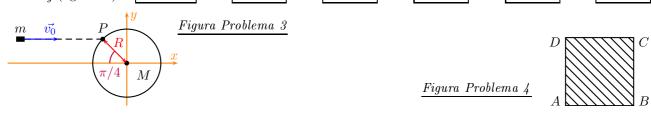
Problema 2

Un palloncino sferico di massa m=36.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=28.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=3.50 m.



$$\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \quad \boxed{0.0346} \quad \mathrm{B} \quad \boxed{0.0381} \quad \mathrm{C} \quad \boxed{0.0431} \quad \mathrm{D} \quad \boxed{0.0151} \quad \mathrm{E} \quad \boxed{0.0754}$$


Problema 3

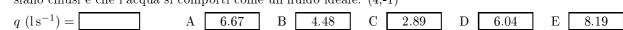

Un disco di massa M=160 g e raggio R=10.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=57.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4

Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 22.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 2.90 kg ciascuna poste nei tre vertici consecutivi A, B, C.


1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

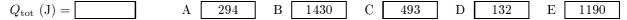
$$R \text{ (N)} =$$
 A 902 B 348 C 85.3 D 136 E 216

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R = 7.50 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r = 1 cm. Si assuma per la densità dell'acqua il valore $\rho = 1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.30 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=11.0 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a = 50.0$ °C. Un cubo di marmo di capacità termica $C_m = 200 \text{ cal K}^{-1}$ a temperatura $T_m = -14.0$ °C viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r = 50 \text{ cal K}^{-1}$ a temperatura $T_r = 71.0$ °C.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 18.0 B 27.0 C 35.7 D 50.0 E 40.6

Problema 7

Un gas perfetto **biatomico** con n=1.60 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=2.80$ l e alla temperatura $T_i=130^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=33.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

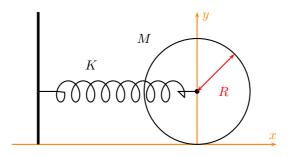
Nome	Cognome	$Matricola\ num.$

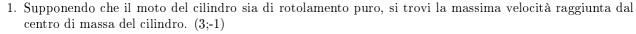
Compitino di Fisica Generale del 27/05/2009

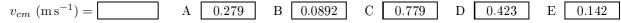
Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:

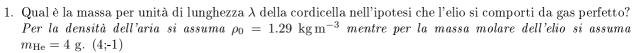

scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.


Si assumano i seguenti valori per le costanti che compaiono nei problemi:


intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

Problema 1

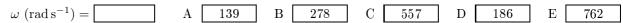
Un cilindro omogeneo di massa M=570 g e raggio R=4.90 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=120~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=1.20~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.



2. Sapendo che il coefficiente di attrito statico tra pavimento e disco è pari a $\mu_s = 0.5$, si dica per quali valori dell'allungamento iniziale della molla Δx , il cilindro scivola invece di rotolare senza strisciare. (4;-1)

Problema 2

Un palloncino sferico di massa m=33.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=25.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=2.70 m.



$$\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \ \boxed{0.00144} \quad \mathrm{B} \ \boxed{0.0136} \quad \mathrm{C} \ \boxed{0.0112} \quad \mathrm{D} \ \boxed{0.00249} \quad \mathrm{E} \ \boxed{0.0208}$$

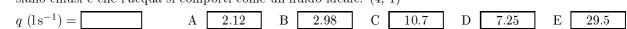
Problema 3

Un disco di massa M=310 g e raggio R=8.00 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=63.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4


Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M=42.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m=3.30 kg ciascuna poste nei tre vertici consecutivi A, B, C.

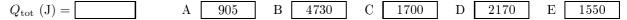
1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R=8.00 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r=1 cm. Si assuma per la densità dell'acqua il valore $\rho=1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.80 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=12.0 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=48.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-12.0^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=70.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 18.0 B 39.3 C 35.3 D 48.0 E 27.0

Problema 7

Un gas perfetto **biatomico** con n=1.90 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=1.10$ l e alla temperatura $T_i=120^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=31.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

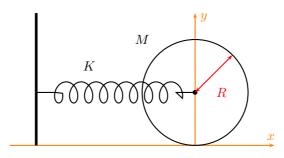
Nome	Cognome	$Matricola\ num.$

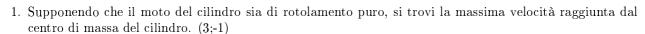
Compitino di Fisica Generale del 27/05/2009

Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.


Si assumano i seguenti valori per le costanti che compaiono nei problemi:

intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

Problema 1

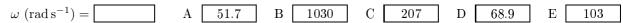
Un cilindro omogeneo di massa M=620 g e raggio R=9.00 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=170~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=1.90~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

 $v_{cm} \text{ (m s}^{-1}) =$ A 0.308 B 0.344 C 1.41 D 0.257 E 0.225

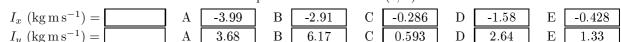
2. Sapendo che il coefficiente di attrito statico tra pavimento e disco è pari a $\mu_s=0.5$, si dica per quali valori dell'allungamento iniziale della molla Δx , il cilindro scivola invece di rotolare senza strisciare. (4;-1)

Problema 2

Un palloncino sferico di massa m=11.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=24.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=2.20 m.



 $\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \quad \boxed{0.0259} \quad \mathrm{B} \quad \boxed{0.0204} \quad \mathrm{C} \quad \boxed{0.0230} \quad \mathrm{D} \quad \boxed{0.0111} \quad \mathrm{E} \quad \boxed{0.00539}$


Problema 3

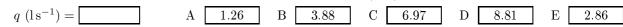
Un disco di massa M=280 g e raggio R=13.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=38.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4

Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 27.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 2.60 kg ciascuna poste nei tre vertici consecutivi A, B, C.


1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

$$R (N) = \begin{bmatrix} & A & 365 & B & 869 & C & 76.4 & D & 265 & E & 158 \end{bmatrix}$$

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R=6.40 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r=1 cm. Si assuma per la densità dell'acqua il valore $\rho=1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.50 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=11.0 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6

Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=47.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-13.0^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=72.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 25.5 B 35.3 C 47.0 D 38.4 E 17.0

Problema 7

Un gas perfetto **biatomico** con n=2.80 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=2.90$ l e alla temperatura $T_i=130^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=28.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

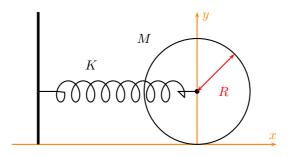
Nome	Cognome	$Matricola\ num.$

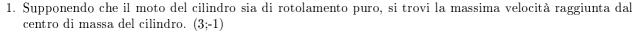
Compitino di Fisica Generale del 27/05/2009

Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.


Si assumano i seguenti valori per le costanti che compaiono nei problemi:

intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

Problema 1

Un cilindro omogeneo di massa M=490 g e raggio R=6.00 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=120~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=1.30~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

 $v_{cm} \text{ (m s}^{-1}) =$ A 0.988 B 0.910 C 0.0541 D 0.220 E 0.166

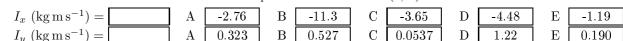
2. Sapendo che il coefficiente di attrito statico tra pavimento e disco è pari a $\mu_s = 0.5$, si dica per quali valori dell'allungamento iniziale della molla Δx , il cilindro scivola invece di rotolare senza strisciare. (4;-1)

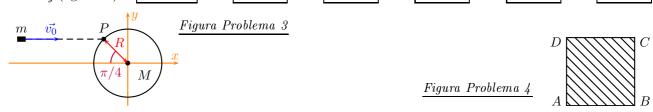
 $\Delta x \text{ (cm)} = \begin{bmatrix} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$

Problema 2

Un palloncino sferico di massa m=11.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=29.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=3.10 m.

 $\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \quad \boxed{0.152} \quad \mathrm{B} \quad \boxed{0.219} \quad \mathrm{C} \quad \boxed{0.0282} \quad \mathrm{D} \quad \boxed{0.0575} \quad \mathrm{E} \quad \boxed{0.104}$


Problema 3

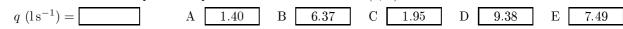

Un disco di massa M=180 g e raggio R=9.00 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=54.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4

Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 27.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 3.10 kg ciascuna poste nei tre vertici consecutivi A, B, C.


1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

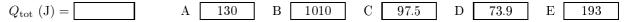
$$R (N) =$$
 A 91.1 B 265 C 14.3 D 163 E 55.6

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R=6.60 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r=1 cm. Si assuma per la densità dell'acqua il valore $\rho=1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.20 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=12.0 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=48.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-13.0^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=71.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 48.0 B 17.5 C 26.3 D 35.3 E 39.2

Problema 7

Un gas perfetto **biatomico** con n=1.80 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=2.40$ l e alla temperatura $T_i=100^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=39.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

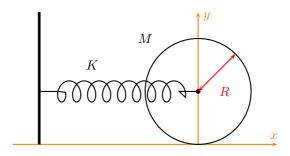
Nome	Cognome	$Matricola\ num.$

Compitino di Fisica Generale del 27/05/2009

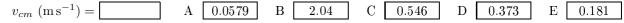
Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

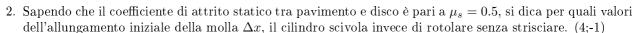
Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.

Si assumano i seguenti valori per le costanti che compaiono nei problemi:


intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

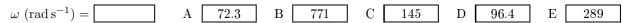

Problema 1

Un cilindro omogeneo di massa M=420 g e raggio R=4.30 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=140~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=2.50~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

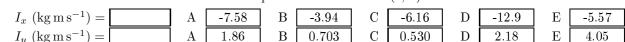
1.	Supponendo che il moto de	el cilindro	sia di	rotolamento	puro,	si trovi	la	\max	velocità	raggiunta	da
	centro di massa del cilindro	(3;-1)									

Problema 2

Un palloncino sferico di massa m=16.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=26.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=3.70 m.



$$\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \quad \boxed{0.0465} \quad \mathrm{B} \quad \boxed{0.0167} \quad \mathrm{C} \quad \boxed{0.00307} \quad \mathrm{D} \quad \boxed{0.0101} \quad \mathrm{E} \quad \boxed{0.0149}$$

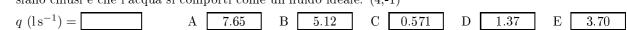

Problema 3

Un disco di massa M=330 g e raggio R=11.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=45.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4


Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 25.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 3.00 kg ciascuna poste nei tre vertici consecutivi A, B, C.

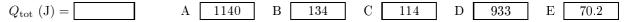
1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R = 7.50 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r = 1 cm. Si assuma per la densità dell'acqua il valore $\rho = 1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=5.00 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=11.0 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=46.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-14.0^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=71.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 24.0 B 34.3 C 46.0 D 16.0 E 37.4

Problema 7

Un gas perfetto **biatomico** con n=1.70 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=2.60$ l e alla temperatura $T_i=100^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=27.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

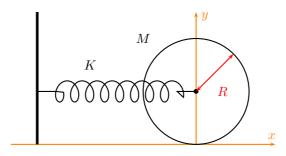
Nome	Cognome	$Matricola\ num.$

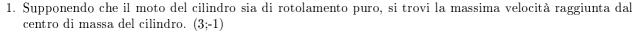
Compitino di Fisica Generale del 27/05/2009

Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.


Si assumano i seguenti valori per le costanti che compaiono nei problemi:

intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

Problema 1

Un cilindro omogeneo di massa M=580 g e raggio R=8.00 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=130~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=2.00~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

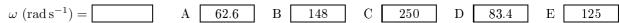
 $v_{cm} \text{ (m s}^{-1}) =$ A 0.379 B 1.34 C 0.244 D 3.32 E 2.34

2. Sapendo che il coefficiente di attrito statico tra pavimento e disco è pari a $\mu_s=0.5$, si dica per quali valori dell'allungamento iniziale della molla Δx , il cilindro scivola invece di rotolare senza strisciare. (4;-1)

 $\Delta x \text{ (cm)} =$ A 1.16 B 6.56 C 3.64 D 5.70 E 1.82

Problema 2

Un palloncino sferico di massa m=20.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=29.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=4.40 m.



 $\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \quad \boxed{0.0234} \quad \mathrm{B} \quad \boxed{0.00196} \quad \mathrm{C} \quad \boxed{0.00660} \quad \mathrm{D} \quad \boxed{0.0104} \quad \mathrm{E} \quad \boxed{0.0178}$

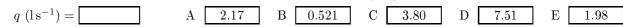
Problema 3

Un disco di massa M=220 g e raggio R=13.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=46.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4


Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 40.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 3.50 kg ciascuna poste nei tre vertici consecutivi A, B, C.

1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R = 7.20 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r = 1 cm. Si assuma per la densità dell'acqua il valore $\rho = 1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.80 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=10.0 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6

Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a = 50.0$ °C. Un cubo di marmo di capacità termica $C_m = 200 \text{ cal K}^{-1}$ a temperatura $T_m = -12.0$ °C viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r = 50 \text{ cal K}^{-1}$ a temperatura $T_r = 70.0$ °C.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 50.0 B 40.9 C 28.5 D 36.0 E 19.0

Problema 7

Un gas perfetto **biatomico** con n=2.70 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=2.60$ l e alla temperatura $T_i=110^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=30.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

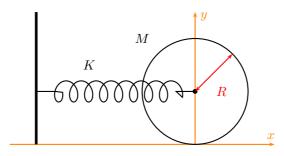
Nome	Cognome	$Matricola\ num.$

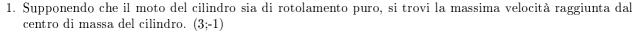
Compitino di Fisica Generale del 27/05/2009

Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.


Si assumano i seguenti valori per le costanti che compaiono nei problemi:

intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

Problema 1

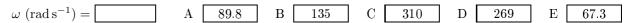
Un cilindro omogeneo di massa M=360 g e raggio R=6.40 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=110~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=2.00~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

 $v_{cm} \text{ (m s}^{-1}) =$ A 0.0679 B 0.164 C 0.285 D 0.189 E 1.56

2. Sapendo che il coefficiente di attrito statico tra pavimento e disco è pari a $\mu_s = 0.5$, si dica per quali valori dell'allungamento iniziale della molla Δx , il cilindro scivola invece di rotolare senza strisciare. (4;-1)

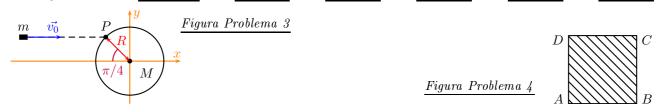
Problema 2

Un palloncino sferico di massa m=35.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=28.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=2.60 m.



 $\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \ \boxed{0.00318} \quad \mathrm{B} \ \boxed{0.00784} \quad \mathrm{C} \ \boxed{0.0206} \quad \mathrm{D} \ \boxed{0.00611} \quad \mathrm{E} \ \boxed{0.0153}$

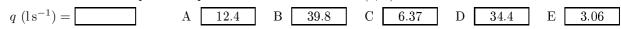
Problema 3


Un disco di massa M=340 g e raggio R=8.40 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=32.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4


Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M=47.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m=3.20 kg ciascuna poste nei tre vertici consecutivi A, B, C.

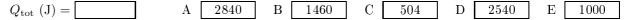
1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R = 7.00 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r = 1 cm. Si assuma per la densità dell'acqua il valore $\rho = 1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.20 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=12.0 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=48.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-9.70^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=70.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 19.2 B 28.7 C 39.6 D 48.0 E 36.1

Problema 7

Un gas perfetto **biatomico** con n=1.40 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=1.20$ l e alla temperatura $T_i=110^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=32.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

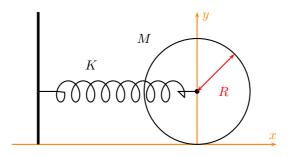
Nome	Cognome	$Matricola\ num.$

Compitino di Fisica Generale del 27/05/2009

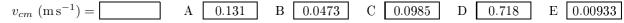
Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

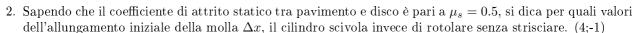
Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.

Si assumano i seguenti valori per le costanti che compaiono nei problemi:


intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.


Problema 1

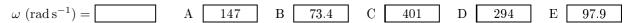
Un cilindro omogeneo di massa M=610 g e raggio R=8.40 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=130~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=1.10~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

1.	Supponendo che il moto de	el cilindro	sia di	rotolamento	puro,	si trovi	la	\max	velocità	raggiunta	da
	centro di massa del cilindro	(3;-1)									

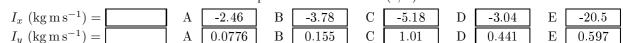
$$\Delta x \text{ (cm)} =$$
 A 6.90 B 0.931 C 3.83 D 0.292 E 1.01

Problema 2

Un palloncino sferico di massa m=11.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=25.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=2.70 m.



$$\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \quad \boxed{0.0824} \quad \mathrm{B} \quad \boxed{0.0952} \quad \mathrm{C} \quad \boxed{0.0193} \quad \mathrm{D} \quad \boxed{0.0599} \quad \mathrm{E} \quad \boxed{0.0147}$$


Problema 3

Un disco di massa M=150 g e raggio R=13.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=54.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4

Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 21.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 3.10 kg ciascuna poste nei tre vertici consecutivi A, B, C.


1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

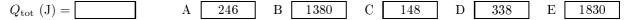
$$R ext{ (N)} =$$
 A 206 B 69.0 C 133 D 91.1 E 9.00

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R = 5.60 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r = 1 cm. Si assuma per la densità dell'acqua il valore $\rho = 1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.60 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=9.10 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=49.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-12.0^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=74.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 27.8 B 40.2 C 49.0 D 18.5 E 37.0

Problema 7

Un gas perfetto **biatomico** con n=1.20 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=1.80$ l e alla temperatura $T_i=150^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=25.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

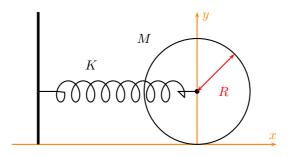
Nome	Cognome	$Matricola\ num.$

Compitino di Fisica Generale del 27/05/2009

Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:

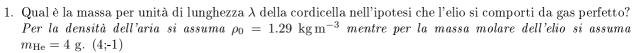

scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.

Si assumano i seguenti valori per le costanti che compaiono nei problemi:

intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

Problema 1

Un cilindro omogeneo di massa M=690 g e raggio R=5.20 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=170~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=2.80~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

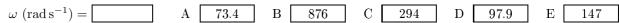

1.	Supponendo che il moto del	cilindro sia	ı di	rotolamento	puro,	si trov	la	\max sima	velocità	raggiunta	$_{ m dal}$
	centro di massa del cilindro.	(3;-1)									

 $v_{cm} \text{ (m s}^{-1}) =$ A 0.0481 B 0.0889 C 0.359 D 1.97 E 0.185

2. Sapendo che il coefficiente di attrito statico tra pavimento e disco è pari a $\mu_s = 0.5$, si dica per quali valori dell'allungamento iniziale della molla Δx , il cilindro scivola invece di rotolare senza strisciare. (4;-1)

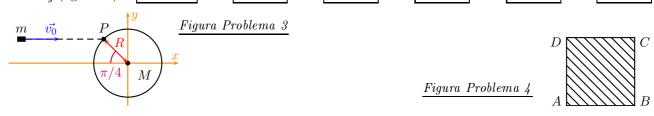
Problema 2

Un palloncino sferico di massa m=13.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=26.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=3.30 m.



 $\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \ \boxed{0.00533} \quad \mathrm{B} \ \boxed{0.0740} \quad \mathrm{C} \ \boxed{0.0962} \quad \mathrm{D} \ \boxed{0.0874} \quad \mathrm{E} \ \boxed{0.0176}$

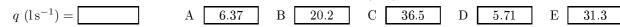
Problema 3


Un disco di massa M=170 g e raggio R=13.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=54.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4


Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 35.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 3.10 kg ciascuna poste nei tre vertici consecutivi A, B, C.

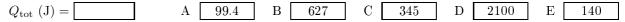
1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R = 7.50 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r = 1 cm. Si assuma per la densità dell'acqua il valore $\rho = 1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.20 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=12.0 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a = 50.0$ °C. Un cubo di marmo di capacità termica $C_m = 200 \text{ cal K}^{-1}$ a temperatura $T_m = -7.70$ °C viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r = 50 \text{ cal K}^{-1}$ a temperatura $T_r = 70.0$ °C.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 50.0 B 21.2 C 31.7 D 37.4 E 41.6

Problema 7

Un gas perfetto **biatomico** con n=2.60 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=2.20$ l e alla temperatura $T_i=120^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=32.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

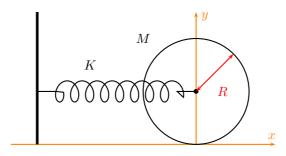
Nome	Cognome	$Matricola\ num.$

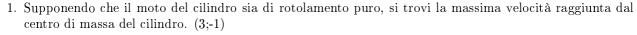
Compitino di Fisica Generale del 27/05/2009

Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.


Si assumano i seguenti valori per le costanti che compaiono nei problemi:

intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

Problema 1

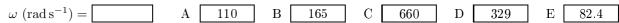
Un cilindro omogeneo di massa M=690 g e raggio R=4.90 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=160~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=2.60~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

 $v_{cm} \text{ (m s}^{-1}) =$ A 0.403 B 1.77 C 0.323 D 0.0976 E 0.264

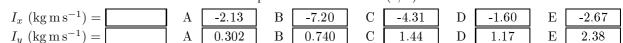
2. Sapendo che il coefficiente di attrito statico tra pavimento e disco è pari a $\mu_s = 0.5$, si dica per quali valori dell'allungamento iniziale della molla Δx , il cilindro scivola invece di rotolare senza strisciare. (4;-1)

Problema 2

Un palloncino sferico di massa m=34.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=27.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=3.20 m.


1. Qual è la massa per unità di lunghezza λ della cordicella nell'ipotesi che l'elio si comporti da gas perfetto? Per la densità dell'aria si assuma $\rho_0 = 1.29 \text{ kg m}^{-3}$ mentre per la massa molare dell'elio si assuma $m_{\text{He}} = 4 \text{ g.}$ (4;-1)

 $\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \ \boxed{0.00330} \quad \mathrm{B} \ \boxed{0.0570} \quad \mathrm{C} \ \boxed{0.0519} \quad \mathrm{D} \ \boxed{0.0244} \quad \mathrm{E} \ \boxed{0.0142}$

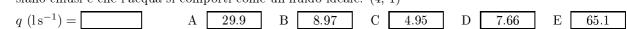

Problema 3

Un disco di massa M=280 g e raggio R=8.80 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=41.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4


Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 48.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 3.40 kg ciascuna poste nei tre vertici consecutivi A, B, C.

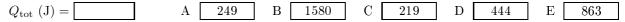
1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R=6.80 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r=1 cm. Si assuma per la densità dell'acqua il valore $\rho=1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.90 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=9.90 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=47.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-14.0^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=73.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 38.3 B 47.0 C 16.5 D 24.8 E 35.3

Problema 7

Un gas perfetto **biatomico** con n=2.60 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=2.10$ l e alla temperatura $T_i=100^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=34.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

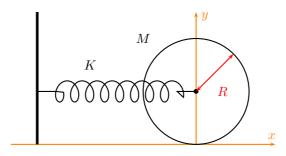
Nome	Cognome	$Matricola\ num.$

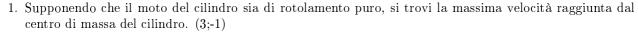
Compitino di Fisica Generale del 27/05/2009

Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:

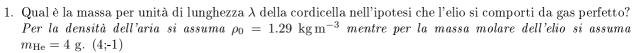

scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.


Si assumano i seguenti valori per le costanti che compaiono nei problemi:

intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

Problema 1

Un cilindro omogeneo di massa M=440 g e raggio R=5.20 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=140~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=3.10~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

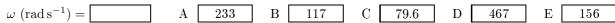

 $v_{cm} \text{ (m s}^{-1}) =$ A 0.755 B 2.47 C 3.73 D 0.451 E 0.539

2. Sapendo che il coefficiente di attrito statico tra pavimento e disco è pari a $\mu_s=0.5$, si dica per quali valori dell'allungamento iniziale della molla Δx , il cilindro scivola invece di rotolare senza strisciare. (4;-1)

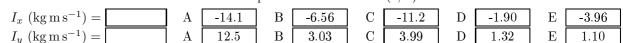
 $\Delta x \text{ (cm)} =$ A 39.8 B 2.57 C 20.3 D 15.3 E 4.62

Problema 2

Un palloncino sferico di massa m=14.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=28.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=2.70 m.



 $\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \quad \boxed{0.123} \quad \mathrm{B} \quad \boxed{0.0277} \quad \mathrm{C} \quad \boxed{0.0361} \quad \mathrm{D} \quad \boxed{0.294} \quad \mathrm{E} \quad \boxed{0.320}$

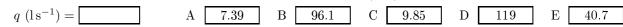

Problema 3

Un disco di massa M=160 g e raggio R=10.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=66.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4


Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 13.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 2.70 kg ciascuna poste nei tre vertici consecutivi A, B, C.

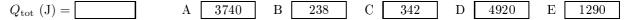
1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R=6.80 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r=1 cm. Si assuma per la densità dell'acqua il valore $\rho=1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.90 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=12.0 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=49.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-12.0^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=73.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 40.2 B 49.0 C 18.5 D 27.8 E 36.7

Problema 7

Un gas perfetto **biatomico** con n=1.60 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=2.30$ l e alla temperatura $T_i=120^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=32.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

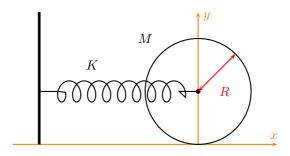
Nome	Cognome	$Matricola\ num.$

Compitino di Fisica Generale del 27/05/2009

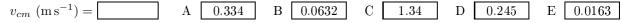
Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

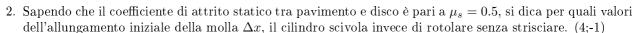
Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.

Si assumano i seguenti valori per le costanti che compaiono nei problemi:


intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.


Problema 1

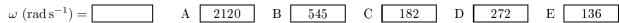
Un cilindro omogeneo di massa M=450 g e raggio R=6.70 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=180~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=1.50~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

1.	Supponendo che il moto de	el cilindro	sia di	rotolamento	puro,	si trovi	la	\max	velocità	raggiunta	da
	centro di massa del cilindro	(3;-1)									

$$\Delta x \text{ (cm)} =$$
 A 3.68 B 0.990 C 2.04 D 4.73 E 18.2

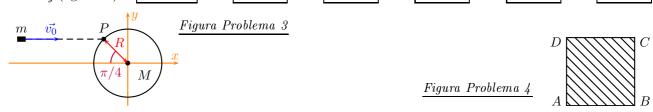
Problema 2

Un palloncino sferico di massa m=13.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=29.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=4.60 m.



$$\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \ \boxed{0.00259} \quad \mathrm{B} \ \boxed{0.0215} \quad \mathrm{C} \ \boxed{0.00164} \quad \mathrm{D} \ \boxed{0.0171} \quad \mathrm{E} \ \boxed{0.0186}$$

Problema 3

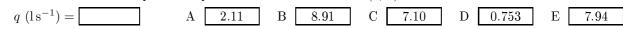

Un disco di massa M=200 g e raggio R=8.70 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=67.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4

Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M=34.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m=2.60 kg ciascuna poste nei tre vertici consecutivi A, B, C.


1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

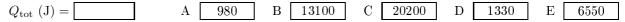
$$R \text{ (N)} =$$
 A $\boxed{76.4}$ B $\boxed{192}$ C $\boxed{83.5}$ D $\boxed{1350}$ E $\boxed{333}$

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R=6.10 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r=1 cm. Si assuma per la densità dell'acqua il valore $\rho=1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.50 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=10.0 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=49.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-13.0^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=73.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 27.0 B 36.3 C 49.0 D 40.0 E 18.0

Problema 7

Un gas perfetto **biatomico** con n=1.10 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=2.80$ l e alla temperatura $T_i=130^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=33.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

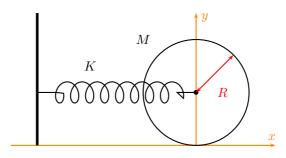
Nome	Cognome	Matricola num.

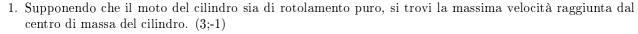
Compitino di Fisica Generale del 27/05/2009

Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.


Si assumano i seguenti valori per le costanti che compaiono nei problemi:

intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

Problema 1

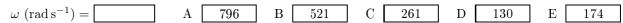
Un cilindro omogeneo di massa M=390 g e raggio R=9.00 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=160~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=3.20~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

 $v_{cm} \text{ (m s}^{-1}) =$ A 0.0384 B 0.529 C 0.162 D 2.90 E 0.0978

2. Sapendo che il coefficiente di attrito statico tra pavimento e disco è pari a $\mu_s = 0.5$, si dica per quali valori dell'allungamento iniziale della molla Δx , il cilindro scivola invece di rotolare senza strisciare. (4;-1)

Problema 2

Un palloncino sferico di massa m=20.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=26.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=3.40 m.



 $\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \quad \boxed{0.0511} \quad \mathrm{B} \quad \boxed{0.0557} \quad \mathrm{C} \quad \boxed{0.173} \quad \mathrm{D} \quad \boxed{0.0150} \quad \mathrm{E} \quad \boxed{0.0171}$

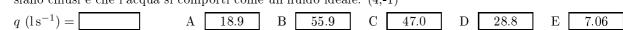
Problema 3

Un disco di massa M=220 g e raggio R=9.50 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=70.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4


Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 16.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 2.70 kg ciascuna poste nei tre vertici consecutivi A, B, C.

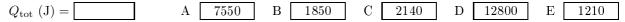
1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R=6.70 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r=1 cm. Si assuma per la densità dell'acqua il valore $\rho=1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.40 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=9.30 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=47.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-14.0^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=72.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 16.5 B 24.8 C 35.0 D 38.2 E 47.0

Problema 7

Un gas perfetto **biatomico** con n=1.80 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=2.80$ l e alla temperatura $T_i=140^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=28.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

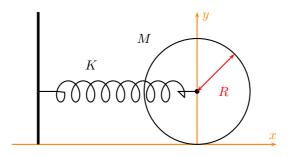
Nome	Cognome	$Matricola\ num.$

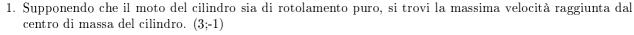
Compitino di Fisica Generale del 27/05/2009

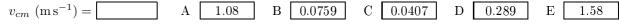
Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

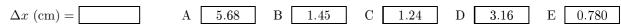
Modalità di risposta:

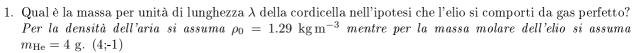

scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.


Si assumano i seguenti valori per le costanti che compaiono nei problemi:


intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

Problema 1


Un cilindro omogeneo di massa M=580 g e raggio R=9.40 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=150~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=2.20~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.



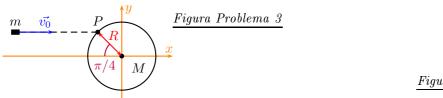
2. Sapendo che il coefficiente di attrito statico tra pavimento e disco è pari a $\mu_s = 0.5$, si dica per quali valori dell'allungamento iniziale della molla Δx , il cilindro scivola invece di rotolare senza strisciare. (4;-1)

Problema 2

Un palloncino sferico di massa m=12.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=28.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=2.20 m.

$$\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \quad \boxed{0.0349} \quad \mathrm{B} \quad \boxed{0.0770} \quad \mathrm{C} \quad \boxed{0.176} \quad \mathrm{D} \quad \boxed{0.122} \quad \mathrm{E} \quad \boxed{0.0434}$$

Problema 3


Un disco di massa M=160 g e raggio R=14.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m = M/2 viaggia con velocità $v_0 = 36.0 \text{ m s}^{-1}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

 $\omega \, (\mathrm{rad} \, \mathrm{s}^{-1}) =$ 90.9 В 60.6 С 45.517.4 \mathbf{E} 182

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

 $I_x \; (\text{kg m s}^{-1}) =$ -2.16В \mathbf{C} -1.81D -3.04Ε -0.910-8.51 $I_u \, (\text{kg m s}^{-1}) =$ C D Ε В 0.907 0.7203.66 10.6 0.485

Problema 4

Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M=31.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m=3.10 kg ciascuna poste nei tre vertici consecutivi A, B, C.

1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

$$R \; (\mathrm{N}) = \boxed{ \; 91.1 \quad B \quad 304 \quad C \quad 182 \quad D \quad 48.3 \quad E \quad 107 }$$

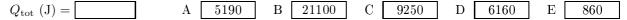
Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R=6.60 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r=1 cm. Si assuma per la densità dell'acqua il valore $\rho = 1000 \text{ kg m}^{-3}$ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.20 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h = 9.60 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

$$q (1s^{-1}) =$$
 A 23.9 B 28.0 C 9.13 D 6.73 E 12.3

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=49.0$ °C. Un cubo di marmo di capacità termica $C_m=200~{\rm cal\,K^{-1}}$ a temperatura $T_m=-13.0$ °C viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r = 50 \text{ cal K}^{-1}$ a temperatura $T_r = 70.0^{\circ}\text{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 35.3 B 49.0 C 18.0 D 39.9 E 27.0

Problema 7

Un gas perfetto biatomico con n = 1.30 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i = 2.10$ l e alla temperatura $T_i = 100^{\circ}$ C (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f = 3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f = 28.0^{\circ}$ C mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

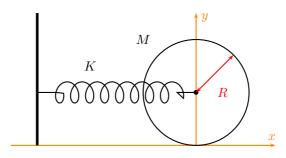
Nome	Cognome	$Matricola\ num.$

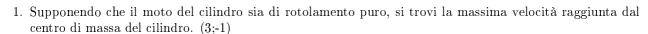
Compitino di Fisica Generale del 27/05/2009

Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.


Si assumano i seguenti valori per le costanti che compaiono nei problemi:

intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

Problema 1

Un cilindro omogeneo di massa M=580 g e raggio R=8.90 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=130~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=1.10~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

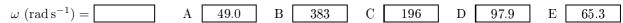
 $v_{cm} \text{ (m s}^{-1}) =$ A 2.05 B 0.134 C 0.883 D 0.736 E 0.538

2. Sapendo che il coefficiente di attrito statico tra pavimento e disco è pari a $\mu_s=0.5$, si dica per quali valori dell'allungamento iniziale della molla Δx , il cilindro scivola invece di rotolare senza strisciare. (4;-1)

 $\Delta x \text{ (cm)} =$ A 48.7 B 6.56 C 44.8 D 3.64 E 16.2

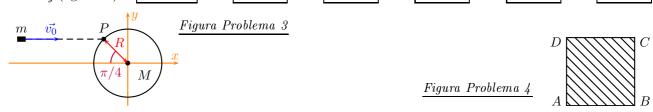
Problema 2

Un palloncino sferico di massa m=20.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=25.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=3.30 m.



 $\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \ \boxed{0.00858} \quad \mathrm{B} \ \boxed{0.00203} \quad \mathrm{C} \ \boxed{0.0365} \quad \mathrm{D} \ \boxed{0.0131} \quad \mathrm{E} \ \boxed{0.0337}$

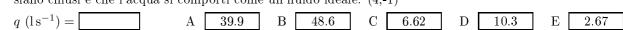
Problema 3


Un disco di massa M=240 g e raggio R=13.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=36.0$ m s⁻¹ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4


Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 19.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 3.00 kg ciascuna poste nei tre vertici consecutivi A, B, C.

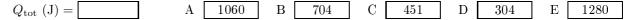
1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R=7.70 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r=1 cm. Si assuma per la densità dell'acqua il valore $\rho=1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.10 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=9.30 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a = 50.0$ °C. Un cubo di marmo di capacità termica $C_m = 200 \text{ cal K}^{-1}$ a temperatura $T_m = -13.0$ °C viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r = 50 \text{ cal K}^{-1}$ a temperatura $T_r = 72.0$ °C.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 18.5 B 27.8 C 40.8 D 50.0 E 36.3

Problema 7

Un gas perfetto **biatomico** con n=1.70 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=2.80$ l e alla temperatura $T_i=120^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=38.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

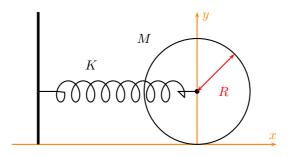
Nome	Cognome	$Matricola\ num.$

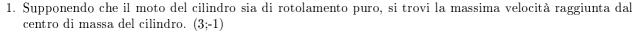
Compitino di Fisica Generale del 27/05/2009

Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.


Si assumano i seguenti valori per le costanti che compaiono nei problemi:

intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

Problema 1

Un cilindro omogeneo di massa M=370 g e raggio R=6.40 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=170~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=1.10~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

 $v_{cm} \text{ (m s}^{-1}) =$ A 0.0664 B 1.05 C 0.00674 D 0.193 E 0.108

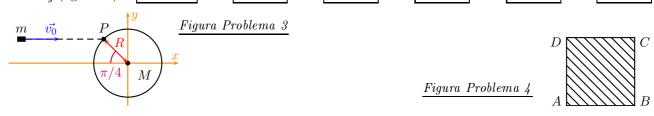
2. Sapendo che il coefficiente di attrito statico tra pavimento e disco è pari a $\mu_s = 0.5$, si dica per quali valori dell'allungamento iniziale della molla Δx , il cilindro scivola invece di rotolare senza strisciare. (4;-1)

Problema 2

Un palloncino sferico di massa m=12.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=29.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=2.70 m.

 $\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \quad \boxed{0.0397} \quad \mathrm{B} \quad \boxed{0.667} \quad \mathrm{C} \quad \boxed{0.0995} \quad \mathrm{D} \quad \boxed{0.475} \quad \mathrm{E} \quad \boxed{0.0320}$

Problema 3

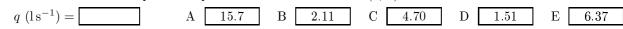

Un disco di massa M=210 g e raggio R=13.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=41.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4

Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 19.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 3.40 kg ciascuna poste nei tre vertici consecutivi A, B, C.


1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

$$R ext{ (N)} =$$
 A 2250 B 260 C 126 D 186 E 100

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R = 5.50 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r = 1 cm. Si assuma per la densità dell'acqua il valore $\rho = 1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.10 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=11.0 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6

Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=49.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-14.0^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=75.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 49.0 B 40.0 C 26.3 D 36.7 E 17.5

Problema 7

Un gas perfetto **biatomico** con n=2.10 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=1.40$ l e alla temperatura $T_i=140^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=25.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

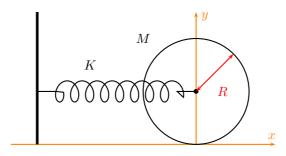
Nome	Cognome	$Matricola\ num.$

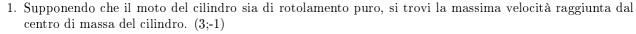
Compitino di Fisica Generale del 27/05/2009

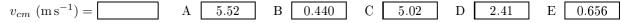
Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

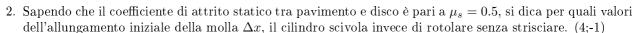
Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.


Si assumano i seguenti valori per le costanti che compaiono nei problemi:


intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

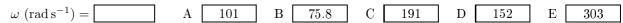

Problema 1

Un cilindro omogeneo di massa M=630 g e raggio R=6.90 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=190~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=3.10~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

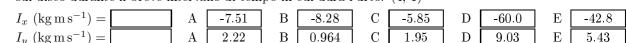
$$\Delta x \text{ (cm)} =$$
 A 2.71 B 3.94 C 0.474 D 4.87 E 0.575

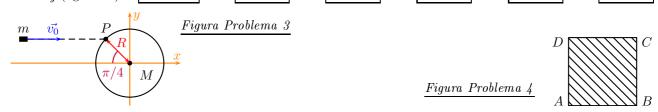
Problema 2

Un palloncino sferico di massa m=16.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=25.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=2.60 m.



$$\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \quad \boxed{0.0205} \quad \mathrm{B} \quad \boxed{0.00307} \quad \mathrm{C} \quad \boxed{0.0380} \quad \mathrm{D} \quad \boxed{0.0181} \quad \mathrm{E} \quad \boxed{0.0312}$$

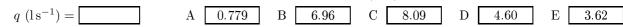

Problema 3


Un disco di massa M=260 g e raggio R=14.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=60.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4


Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 14.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 3.00 kg ciascuna poste nei tre vertici consecutivi A, B, C.

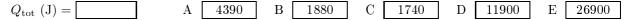
1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R=8.00 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r=1 cm. Si assuma per la densità dell'acqua il valore $\rho=1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.40 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=10.0 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=46.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-14.0^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=71.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 46.0 B 37.4 C 24.0 D 34.3 E 16.0

Problema 7

Un gas perfetto **biatomico** con n=2.10 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=2.10$ l e alla temperatura $T_i=120^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=30.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

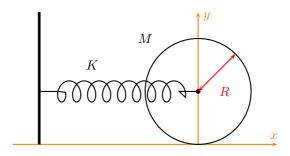
Nome	Cognome	$Matricola\ num.$

Compitino di Fisica Generale del 27/05/2009

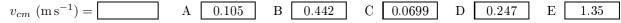
Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

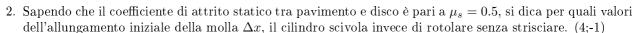
Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.

Si assumano i seguenti valori per le costanti che compaiono nei problemi:


intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.


Problema 1

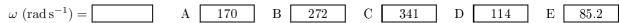
Un cilindro omogeneo di massa M=580 g e raggio R=6.00 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=110~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=2.20~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

1.	Supponendo che il moto de	el cilindro	sia di	rotolamento	puro,	si trovi	la	massima	velocità	raggiunta	da
	centro di massa del cilindro	(3;-1)									

$$\Delta x \text{ (cm)} =$$
 A 14.6 B 7.75 C 3.57 D 5.15 E 4.31

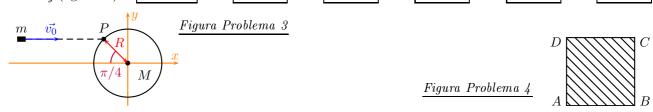
Problema 2

Un palloncino sferico di massa m=11.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=25.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=2.50 m.



$$\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \quad \boxed{0.0378} \quad \mathrm{B} \quad \boxed{0.0209} \quad \mathrm{C} \quad \boxed{0.0171} \quad \mathrm{D} \quad \boxed{0.0889} \quad \mathrm{E} \quad \boxed{0.0146}$$

Problema 3

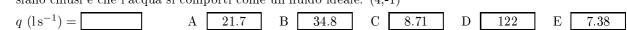

Un disco di massa M=330 g e raggio R=11.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=53.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

$$I_x \text{ (kg m s}^{-1}) =$$
 A $\begin{bmatrix} -31.8 \\ A \end{bmatrix}$ B $\begin{bmatrix} -43.9 \\ A \end{bmatrix}$ C $\begin{bmatrix} -6.56 \\ D \end{bmatrix}$ D $\begin{bmatrix} -18.7 \\ D \end{bmatrix}$ E $\begin{bmatrix} -5.06 \\ D \end{bmatrix}$ $I_y \text{ (kg m s}^{-1}) =$ A $\begin{bmatrix} 2.19 \\ D \end{bmatrix}$ B $\begin{bmatrix} 4.26 \\ D \end{bmatrix}$ C $\begin{bmatrix} 0.274 \\ D \end{bmatrix}$ D $\begin{bmatrix} 6.75 \\ D \end{bmatrix}$ E $\begin{bmatrix} 0.242 \\ D \end{bmatrix}$

Problema 4


Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M=49.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m=2.50 kg ciascuna poste nei tre vertici consecutivi A, B, C.

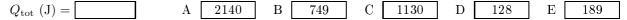
1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R = 7.00 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r = 1 cm. Si assuma per la densità dell'acqua il valore $\rho = 1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.80 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=11.0 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=49.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-12.0^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=71.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 36.0 B 49.0 C 40.1 D 27.8 E 18.5

Problema 7

Un gas perfetto **biatomico** con n=1.40 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=1.60$ l e alla temperatura $T_i=120^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=32.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

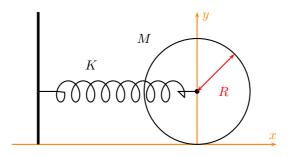
Nome	Cognome	$Matricola\ num.$

Compitino di Fisica Generale del 27/05/2009

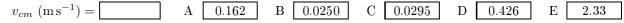
Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

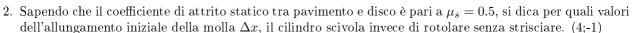
Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.

Si assumano i seguenti valori per le costanti che compaiono nei problemi:


intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.

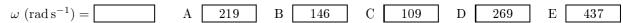

Problema 1

Un cilindro omogeneo di massa M=600 g e raggio R=4.50 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=150~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=3.30~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

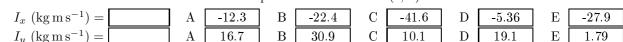
1.	Supponendo che il moto de	el cilindro	sia di	rotolamento	puro,	si trovi	la	massima	velocità	raggiunta	da
	centro di massa del cilindro	(3;-1)									

Problema 2

Un palloncino sferico di massa m=16.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=23.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=2.00 m.



$$\lambda \ (\mathrm{kg} \, \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \ \boxed{0.00112} \quad \mathrm{B} \ \boxed{0.00605} \quad \mathrm{C} \ \boxed{0.0116} \quad \mathrm{D} \ \boxed{0.00441} \quad \mathrm{E} \ \boxed{0.0166}$$


Problema 3

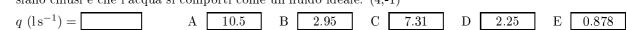
Un disco di massa M=210 g e raggio R=11.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=68.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4

Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M = 34.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m = 2.90 kg ciascuna poste nei tre vertici consecutivi A, B, C.


1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

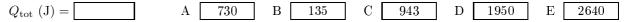
$$R \text{ (N)} =$$
 A 85.3 B 195 C 2230 D 839 E 333

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R = 7.20 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r = 1 cm. Si assuma per la densità dell'acqua il valore $\rho = 1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.60 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=9.50 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a = 50.0$ °C. Un cubo di marmo di capacità termica $C_m = 200 \text{ cal K}^{-1}$ a temperatura $T_m = -8.30$ °C viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r = 50 \text{ cal K}^{-1}$ a temperatura $T_r = 73.0$ °C.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 20.9 B 31.3 C 41.6 D 50.0 E 38.2

Problema 7

Un gas perfetto **biatomico** con n=2.10 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=2.00$ l e alla temperatura $T_i=130^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=29.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

Com	pito	#	50
O 111		11	0

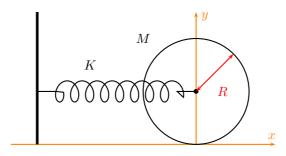
Nome	Cognome	Matricola num.

Compitino di Fisica Generale del 27/05/2009

Questo compito sarà corretto da un computer, che analizzerà solo le risposte numeriche fornite dallo studente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è $\pm 5\%$ salvo ove diversamente indicato. I punteggi per le risposte corrette sono indicati con il valore positivo tra parentesi. Ai quesiti senza risposta non verrà attribuito alcun punteggio: né negativo né positivo. Attenzione, una risposta errata verrà valutata con il punteggio negativo indicato in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!

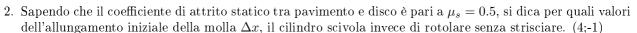
Durante la prova scritta è consentito usare al più due fogli fronte-retro con le formule principali e la calcolatrice. Non è invece possibile utilizzare libri, eserciziari o appunti. Il candidato dovrà restituire tutta la carta fornita dagli esaminatori: non è consentito utilizzare fogli di carta propri per svolgere l'elaborato. Candidati scoperti in violazione di queste norme verranno allontanati dalla prova.

Modalità di risposta:


scrivere il valore numerico della risposta nell'apposito spazio e barrare la lettera corrispondente.

Si assumano i seguenti valori per le costanti che compaiono nei problemi:

intensità campo gravitazionale $g=9.8~{\rm m\,s^{-2}}$; costante dei gas $R=8.36~{\rm J\,mol^{-1}\,K^{-1}}$; la conversione 1 atm = $1.01\times10^5~{\rm Pa}$; e il calore specifico dell'acqua $c_{\rm H_2O}=1~{\rm cal\,g^{-1}\,K^{-1}}$.


Problema 1

Un cilindro omogeneo di massa M=390 g e raggio R=7.50 cm è appoggiato su un pavimento orizzontale. L'asse del cilindro è collegato ad una molla di costante elastica $K=180~{\rm N\,m^{-1}}$ come mostrato in figura ad è libero di ruotare. L'altra estremità della molla è fissata ad una parete verticale. La molla viene allungata inizialmente di una quantità $\Delta x=2.70~{\rm cm}$. Ad un dato istante, il sistema viene lasciato libero di muoversi.

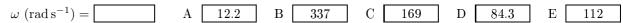
1.	Supponendo che il moto del	cilindro sia di	rotolamento pu	uro, si trovi la	massima velocit	à raggiunta da
	centro di massa del cilindro.	(3:-1)				

 $v_{cm} \text{ (m s}^{-1}) =$ A 0.474 B 0.0315 C 0.175 D 2.59 E 0.0198

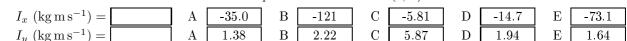
 $\Delta x \text{ (cm)} =$ A 7.70 B 3.19 C 1.77 D 5.60 E 1.05

Problema 2

Un palloncino sferico di massa m=29.0 g viene riempito con elio in presenza dell'atmosfera a temperatura ambiente $T=25\,^{\circ}\mathrm{C}$ e a pressione p=2 atm fino a raggiungere un raggio R=25.0 cm. Il palloncino è collegato con una lunga cordicella. Si osserva che il palloncino si solleva da terra finché il filo non ha una lunghezza h=2.30 m.



 $\lambda \ (\mathrm{kg} \ \mathrm{m}^{-1}) = \boxed{ \qquad \qquad } \mathrm{A} \quad \boxed{0.0148} \quad \mathrm{B} \quad \boxed{0.0702} \quad \mathrm{C} \quad \boxed{0.0258} \quad \mathrm{D} \quad \boxed{0.0237} \quad \mathrm{E} \quad \boxed{0.322}$


Problema 3

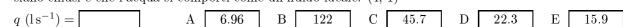
Un disco di massa M=250 g e raggio R=13.0 cm è appoggiato su un pavimento orizzontale e può ruotare attorno ad un asse orizzontale di sezione trascurabile passante per il centro del disco e fissato verticalmente sul pavimento. Un proiettile di massa m=M/2 viaggia con velocità $v_0=62.0~{\rm m\,s^{-1}}$ e urta il disco conficcandosi nel bordo del disco nel punto P individuato dall'angolo di $\pi/4$ come mostrato schematicamente in figura. L'urto avviene in un tempo trascurabile.

1. Si trovi la velocità angolare acquistata dal disco dopo l'urto. (3;-1)

2. Si trovino le componenti x e y (vedi figura) dell'impulso \vec{I} della forza che deve essere esercitata dall'asse sul disco durante il breve intervallo di tempo in cui dura l'urto. (4;-1)

Problema 4

Un tavolo ha forma quadrata e i vertici consecutivi del piano quadrato di massa M=43.0 kg sono A, B, C, e D. Il tavolo possiede solo tre gambe di massa m=2.90 kg ciascuna poste nei tre vertici consecutivi A, B, C.


1. Si trovi il modulo della reazione normale R del pavimento sulla gamba posta in contatto con il vertice A. Suggerimento: si sfrutti la simmetria del problema. (4;-1)

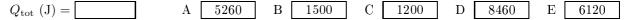
$$R (N) =$$
 A 1050 B 239 C 85.3 D 421 E 1740

Problema 5

La condotta principale di acqua in uno stabile si trova parallela al suolo ed è costituita da tubi di raggio R = 7.10 cm. L'acqua viene portata nei vari appartamenti per mezzo di tubi di raggio r = 1 cm. Si assuma per la densità dell'acqua il valore $\rho = 1000$ kg m⁻³ e per la pressione atmosferica il valore di 1 atm.

1. Se la pressione presente nel condotto principale è p=4.40 atm, quanta acqua (litri al secondo) esce da un rubinetto aperto ad un'altezza h=10.0 m dal suolo. Si supponga che tutti gli altri rubinetti dello stabile siano chiusi e che l'acqua si comporti come un fluido ideale. (4;-1)

Problema 6


Una bacinella di capacità termica trascurabile contiene un litro d'acqua a temperatura $T_a=48.0^{\circ}\mathrm{C}$. Un cubo di marmo di capacità termica $C_m=200~\mathrm{cal\,K^{-1}}$ a temperatura $T_m=-12.0^{\circ}\mathrm{C}$ viene immerso nell'acqua insieme ad un cubetto di rame di capacità termica $C_r=50~\mathrm{cal\,K^{-1}}$ a temperatura $T_r=71.0^{\circ}\mathrm{C}$.

1. Il sistema è isolato termicamente. Si determini la temperatura finale raggiunta dall'acqua. (3:-1)

$$T_{eq}$$
 (°C) = A 48.0 B 18.0 C 27.0 D 35.7 E 39.3

Problema 7

Un gas perfetto **biatomico** con n=2.60 mol compie un ciclo reversibile. Inizialmente il gas si trova a volume $V_i=2.50$ l e alla temperatura $T_i=100^{\circ}\mathrm{C}$ (stato A). Quindi, il gas viene fatto espandere in modo isotermo fino a raggiungere il volume finale $V_f=3V_i$ (stato B). Successivamente il gas viene portato ad una temperatura $T_f=37.0^{\circ}\mathrm{C}$ mantenendo costante il suo volume (stato C). Dopodiché, il gas viene compresso a temperatura costante fino a tornare al volume iniziale V_i (stato D). Infine, la temperatura viene riportata al valore iniziale T_i mantenendo il volume costante.

