Mentre avevamo finito con:

Esempio: \(f(x) = x^5 - \arctan(x^3) \). Abbiamo visto che è suriettiva

\[
\begin{align*}
 f: \mathbb{R} &\to \mathbb{R} \\
 \lim_{x \to +\infty} x^5 - \arctan(x^3) &= +\infty \\
 \lim_{x \to -\infty} x^5 - \arctan(x^3) &= -\infty
\end{align*}
\]

e f(x) è continua o (usare esistenza degli zeri.)

Domanda: per caso è anche iniettiva?

Idea: vedere come si comporta f(x) attorno a 0 (usando Taylor).

In 0, \(\arctan(x^3) = x^3 + o(x^3) \), quindi \(f(x) = x^5 - x^3 + o(x^3) \) attorno a 0.

Quindi \(f(x) \) ha un flesso discendente in 0. Notare \(f(0) = 0 \).

Quindi per \(x > 0 \) e piccoli \(f(x) \approx 0 \) e per \(x < 0 \) e "piccoli" ho \(f(x) > 0 \).

Pero' \(\lim_{x \to +\infty} f(x) = +\infty \), quindi \(f(x) \) prima o poi risale.

In particolare ci sarà un \(x_0 > 0 \) t.c. \(f(x_0) = 0 \) (per esistenza degli zeri)

(possiamo dire: l'eq \(f(x) = 0 \) ha almeno 3 soluzioni diverse)

...non so "da vero" che è fatto precisione...
Quindi $f(x)$ non è iniettiva.

Oss.: se $f(x): \mathbb{R} \to \mathbb{R}$ ha un punto di massimo o minimo locale, allora sicuramente non è iniettiva.

Disegno: \[
\begin{array}{c}
\vdots \\
(+) \\
\vdots \\
\vdots \\
\vdots \\
(-) \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\vdots
\end{array}
\]

(tutti questi valori di y sono presi da $f(x)$ almeno 2 volte.

(analogamente per un minimo locale.)

Esempio: $f(x) = x^3 : \mathbb{R} \to \mathbb{R}$ è iniettiva, e ha un flesso ascendent in 0.

Esempio: $f(x) = x^7 + \sin(x^9) + \arctan(x^6)$.

Domanda: è iniettiva e/o suriettiva?

\[
\lim_{x \to +\infty} f(x) = +\infty, \quad \lim_{x \to -\infty} f(x) = -\infty
\]

$\Rightarrow f(x)$ è suriettiva.

Taylor attorno a 0 da:

\[
x^7 + x^9 + o(x^9) + x^6 + o(x^6) = x^6 + o(x^6)
\]

Quindi $f(x)$ si comporta come x^6, che ha un minimo locale $\Rightarrow f(x)$ non è iniettiva.

Esempio: $f(x) = \sin(x) + \arctan(e^x) + x^4$. Stessa domanda.

Qui $\lim_{x \to +\infty} f(x) = +\infty$ e anche $\lim_{x \to -\infty} f(x) = +\infty$

Quindi il discorso di prima non funziona.
fun è continua \(\mathbb{R} \to \mathbb{R} \)

\(\downarrow \text{non posso andare a } -\infty! \)

Quindi \(f \uparrow \) non sarà suriettiva.

\textbf{Fatto:} se \(f: \mathbb{R} \to \mathbb{R} \) t.c. \(\lim_{x \to +\infty} f(x) = +\infty \) e \(\lim_{x \to -\infty} f(x) = +\infty \)

allora \(f \uparrow \) ammette \underline{minimo} (chiaramente non ammette massimo...)

Perché? Non si può usare

Weierstrass direttamente! (domino non è limitato)

\textbf{Idea:} fisso una soglia per la \(y \), ad esempio \(f(0) + 1 \).

Visto che \(\lim_{x \to \pm \infty} f(x) = +\infty \), \(\exists A, B \) t.c. \(f(x) > f(0) + 1 \)

\(\forall x > A \)

\(f(x) > f(0) + 1 \)

\(\forall x < B \)

In \([B,A]\) \(f \uparrow \) ha massimo e minimo (per Weierstr.)

Mi interessa il minimo, diciamo che è \(m \).

Succede che \(m = \min \{ f(x) \mid x \in \mathbb{R} \} \).

(dentro \([B,A]\) è ovvio per costruzione, fuori da \([B,A]\)

ho \(f(x) > f(0) + 1 \geq m + 1 > m \) (perché \(f(0) \geq m \))

\(\forall x \in [B,A] \).

Visto che \(0 \in [B,A] \).

Quindi \(f(x) = \sin(x + \arctan(x^4)) + x^4 \) non è suriettiva.

È iniettiva? NO, per almeno 2 motivi [vedi sotto \(\uparrow \downarrow \)].
Esempio \[\min \left\{ \frac{1}{x} + x^3 + \arctan(x^2) \mid x > 0 \right\} \] esiste?

\[f(x) : (0, +\infty) \to \mathbb{R} \]

\[\lim_{x \to 0^+} f(x) = +\infty , \quad \lim_{x \to +\infty} f(x) = +\infty. \]

Per un ragionamento analogo a quello di prima possiamo concludere che esiste sicuramente il min.

Altre varianti:

- \(f : \mathbb{R} \to \mathbb{R} \) continua, \(\lim_{x \to \pm\infty} f(x) = -\infty \), allora \(f(x) \) ha sicuramente un massimo.

- \(f : \mathbb{R} \to \mathbb{R} \) continua t.c. \(f(0) = 10 \), \(\lim_{x \to +\infty} f(x) = L_1 > 10 \), \(\lim_{x \to -\infty} f(x) = L_2 > 10 \)

Allora \(f(x) \) ammette sicuramente minimo

(Qui la "soglia" la prendete tra \(L_2 \) e \(10 \).)

Oss: sapendo solo che entrambi i limiti sono limiti, non si può concludere niente...

ammette max e min assoluti.
ammette max ma non min.

(ribaltatela e ottenete min e non max)

\[\frac{\pi}{2} \]

arctan(x) non ha né max né min.

Cosa lasciata in sospeso sopra (*)

Non è' iniettiva per 2 motivi:
1. ha un minimo locale
2. visto che \(\lim_{x \to \pm \infty} f(x) = +\infty \),
ogni valore di y abbastanza grande viene preso almeno 2 volte.

Oss: dopo aver concluso che max e/o min esistano, si trova cercando tra i punti stationari e quelli singolari

\(\xi' = 0 \) \(\xi' \) non esiste

ESEMPIO: \(f(x) = \frac{1}{x(1-x)} \) \(f: (0,1) \to \mathbb{R} \).

\[\lim_{x \to 0^+} \frac{1}{x(1-x)} = +\infty, \quad \lim_{x \to 1^-} \frac{1}{x(1-x)} = +\infty \]

Per i discorsi di oggi possiamo dire che ammette minimo, Cerchiamo.

Non ci sono punti singolari in \((0,1)\), né punti del bordo.
Guardo i punti stationari. \(f(x) = \frac{1}{x-x^2} = (x-x^2)^{-1} \)

\[f'(x) = (-1) (x-x^2)^{-2} \cdot (1-2x) = \frac{1-2x}{(x-x^2)^2} \]

\[f'(x) = 0 \iff -\frac{1-2x}{(x-x^2)^2} = 0 \iff 1-2x = 0 \iff x = \frac{1}{2} \]

Questo deve essere il punto di minimo.

\[f\left(\frac{1}{2}\right) = \frac{1}{\frac{1}{2} \left(1-\frac{1}{2}\right)} = \frac{1}{\frac{1}{4}} = 4 \]

(sì può studiare il segno di \(f'(x) \) per vedere che \(f(x) \) è decrescente in \((0, \frac{1}{2})\) e crescente in \((\frac{1}{2}, 1)\).)

Esempio: \(f(x) = ax^2 + bx + c \) ha grafico una parabola.

L’ascissa del vertice è \(x = -\frac{b}{2a} \).

Perché?

se \(a > 0 \), \(\lim_{x \to \pm \infty} f(x) = +\infty \), quindi esiste il min.

\[f'(x) = 2ax + b \quad \text{e} \quad f'(x) = 0 \iff x = -\frac{b}{2a} \]

che quindi è il pto di minimo (cioè l’ascissa del vertice).

Weierstrass per funzioni periodiche:

Fatto: \(f: \mathbb{R} \to \mathbb{R} \) periodica e continua ammette massimo e minimo assoluti.

Idea: guardo \(f(x) \) in \([0, T]\) (\(T \) è un periodo).
Qui ammette massimi e minimi per Weierstrass, e questi sono anche massimi e minimi in \(\mathbb{R} \) (perché la funzione ripete in \([T, 2T], \text{ etc.}\)). Si può anche dire che i punti di massimi e quelli di minimi sono sicuramente infiniti.

Esempio: \(f(x) = \log(1 + 3 \cos^3(x)) + \sin(5x) : \mathbb{R} \to \mathbb{R} \)

Questo ammette massimi e minimi perché è periodica. (Verificare!)

Un'altra dim. che \(\sin(x^2) \) non è periodica:

\[f'(x) = \cos(x^2) \cdot 2x = 2x \cos(x^2) \quad \text{e se } f(x) \text{ fosse periodica, sarebbe pure periodica}\]

Ma:

\[f'(x) : \mathbb{R} \to \mathbb{R} \text{ non è limitata,} \]

Perché? Perché quando \(x \to \pm \infty \), pure \(x^2 \to \pm \infty \), e in particolare (per \(x = \frac{1}{k\pi}, \text{ } k \in \mathbb{N} \)) \(\cos(x^2) \) prende ogni valore \(\pm 1 \) infinite volte, quindi

\[f(x) = 2x \cdot \cos(x^2) \text{ in quei punti e } 1 = 2x \text{, e questo sta diventando sempre più grande.} \]

Quindi \(f(x) = \sin(x^2) \) non può essere periodica

(se lo fosse, \(f'(x) \) sarebbe pure periodica, quindi limitata, ma non lo è’).
Oss: \(f(x) : A \rightarrow \mathbb{R} \) e \(\exists B, C \in \mathbb{R}, \ C \leq f(x) \leq B \) \(\forall x \in A \)

Se \(f(x) \) ammette \(\text{max} \) e \(\text{min} \) \(\Rightarrow \) \(f(x) \) è limitata

(non riceversa, \(\text{e.g.} \ \arctan(x) \).)

Esempio: \(f(x) = x - \sin x \) non è periodica (non è limitata).

Teoremi di Rolle e di Lagrange (e Cauchy).

Rolle: \(f : [a, b] \rightarrow \mathbb{R} \)

- Continua in \([a, b] \)

- Derivabile in \((a, b) \)

- \(f(a) = f(b) \)

Allora esiste \(c \in (a, b) \) t.c. \(f'(c) = 0 \)

(Perché? Se \(f(x) = f(a) \ \forall x \in [a, b] \), allora \(f'(x) = 0 \ \forall x \in [a, b] \).

Sennò, per Weierstrass \(\exists \text{max} \) e \(\text{min} \), e almeno una è diverso da \(f(a) \). Nel punto di \(\text{max} \) o \(\text{min} \) corrispondente, \(f' = 0 \).)

Lagrange: stesse ipotesi, tranne che stavolta può esserci \(f(a) \neq f(b) \).

Conclusion: \(\exists c \in (a, b) \) t.c. \(\frac{f(b) - f(a)}{b - a} = f'(c) \) (Lagrange = Rolle "storto")