Analisi Matematica II, Anno Accademico 2017-2018.

Ingegneria Edile e Architettura

Vincenzo M. Tortorelli

13 Settembre 2018: settimo appello.

SOLUZIONI

ESERCIZIO 1 (2pt) a- Si calcoli il limite puntuale per $n \to \infty$ di $f_n(x) = \frac{e^x}{1 + e^{xn}}$.

(3pt) b- Mostrare che, per $\varepsilon > 0$, sugli intervalli $[-\varepsilon; 0)$ e $(0; \varepsilon]$ non vi è convergenza uniforme; (4pt) c- mentre vi è convergenza uniforme su $(-\infty; -\varepsilon]$ e $[\varepsilon; +\infty)$.

(4pt) d- Si mostri che per $n \geq 2$ le f_n hanno integrale finito su **R**, e si studi la convergenza $L^1(\mathbf{R})$ della successione di funzioni.

Soluzione: a- si ha
$$e^{xn} \xrightarrow[n \to \infty]{} \begin{cases} 0 & x < 0 \\ 1 & x = 0 \text{ pertanto } f_n(x) \xrightarrow[n \to \infty]{} \begin{cases} e^x & x < 0 \\ \frac{1}{2} & x = 0 =: f(x). \\ 0 & x > 0 \end{cases}$$

b- La convergenza non è uniforme sugli intervalli che contengono 0 essendo il limite puntuale una funzione discontinua e le f_n continue.

- Si può dire di più: appunto anche sugli intervalli del tipo $(0; \varepsilon]$ e $[-\varepsilon; 0)$ non vi è convergenza uniforme. Infatti essendo le f_n continue $\sup_{(a;b)} |f_n(x) - f_m(x)| = \sup_{[a;b]} |f_n - f_m|$, e quindi, per la condizione di Cauchy uniforme e la completezza uniforme delle funzioni continue, se

convergessero uniformemente sull'intervallo aperto convergerebbero ad una funzione continua su quello chiuso. Ma f non è continua in zero.

c-Sugli A che non contengono intorni di 0 la convergenza è uniforme. Basta esaminare, per $\varepsilon > 0$, i casi $A \subseteq (-\infty; -\varepsilon]$ e $A \subseteq [\varepsilon; +\infty)$: poichè se vi è convergenza uniforme su un numero finito di sottoinsiemi vi è convergenza uniforme sulla loro unione. Ora fissato $\varepsilon > 0$:

- su $[\varepsilon; +\infty)$, essendo, per n > 1, $\frac{t}{1+t^n}$ decrescente in $t = e^x \ge 1$, $\sup_{[\varepsilon; +\infty)} |f_n - f| = \sup_{[\varepsilon; +\infty)} \frac{e^x}{1+e^{nx}} = \frac{e^\varepsilon}{1+e^{n\varepsilon}} \to 0, \ n \to \infty.$ - su $(-\infty; \varepsilon]$, essendo, per $n \ge 1$, e^{xn} crescente in x < 0,

$$\sup_{[\varepsilon;+\infty)} |f_n - f| = \sup_{[\varepsilon;+\infty)} \frac{e^x}{1 + e^{nx}} = \frac{e^{\varepsilon}}{1 + e^{n\varepsilon}} \to 0, \ n \to \infty.$$

$$\sup_{(-\infty; -\varepsilon]} |f_n - f| = \sup_{(-\infty; -\varepsilon]} e^{xn} \frac{e^x}{1 + e^{xn}} \le e^{-\varepsilon n} \to 0.$$

d- Poichè le f_n sono continue, e, per $n \geq 2$, $0 \leq f_n(x) \leq \frac{e^x}{1 + e^{2x}}$, si ha che hanno integrale finito su **R** per tali n, avendolo la comune maggiorante, grazie al cambio di variabile $y=e^x$. Quindi, essendo il limite puntuale f(x) anch'esso con integrale finito su R, per convergenza dominata si ha la convergenza $L^1(\mathbf{R})$.

ESERCIZIO n. 2 Sia il sottoinsieme G di \mathbb{R}^3 definito dalla relazione

$$f(x, y, z) =: \sin(x + y + z) + e^{z} + z = 1.$$

- (1pt) a- Si mostri che la sua intersezione con un opportuno intorno di (0,0,0) è il grafico di una funzione regolare z = g(x,y), con g(0,0) = 0.
- (4pt) b- Si calcoli il polinomio di Taylor del secondo ordine e centro (0,0) di g.
- (3pt) c- Si mostri che l'intiero L è grafico di una funzione di due variabili;
- (3pt) si mostri quindi che è definita su tutto \mathbb{R}^2 .

Soluzione: a- si ha $\frac{\partial f}{\partial z}(x,y,z) = \cos(x+y+z) + e^z + 1 \ge e^z > 0$. Poichè $(0,0,0) \in G$, in particolare per x=y=z=0 si è nelle ipotesi del teorema dellle funzioni implicite, per cui vi sono intorni U di (0,0) e V di 0 ed una funzione $g:U\to V$ regolare per cui il suo grafico (su U) coincide con $G\cap (U\times V)$. Necessariamente g(0,0)=0.

b- Considerando quindi che f(x, y, g(x, y)) = 1, e denotando g(x, y) con z, e con z_x , z_y , z_{xy} , ... le sue derivate parziali successive, derivando rispetto ad x e y tale relazione si ottiene:

 $(1+z_x)\cos(x+y+z)+z_xe^z+z_x=0, \ (1+z_y)\cos(x+y+z)+z_ye^z+z_y=0$ e valutando per (x,y)=(0,0) si ottiene

$$(1+g_x(0,0))+g_x(0,0)+g_x(0,0)=0$$
 quindi $g_x(0,0)=-\frac{1}{3}=g_y(0,0).$

- Reiterando la derivazioni sulle relazioni ottenute prima della valutazione

$$z_{xx}\cos(x+y+z) - (1+z_x)^2\sin(x+y+z) + z_{xx}e^z + z_x^2e^z + z_{xx} = 0,$$

$$z_{yy}\cos(x+y+z) - (1+z_y)^2\sin(x+y+z) + z_{yy}e^z + z_y^2e^z + z_{yy} = 0,$$

$$z_{yx}\cos(x+y+z) - (1+z_x)(1+z_y)\sin(x+y+z) + z_{yx}e^z + z_xz_ye^z + z_{yx} = 0;$$

quindi ancora valutando in (x, y) = (0, 0) si ottengo (essendo $g \in C^2$) le sue derivate parziali seconde:

$$g_{xx}(0,0) = -\frac{1}{27} = g_{yy}(0,0) = g_{yx}(0,0) = g_{xx}(0,0).$$

Concludendo il polinomio di Taylor cercato è $-\frac{1}{3}(x+y) - \frac{1}{54}(x^2+y^2+2xy)$.

- c-Fissato (x_0, y_0) si osserva che la funzione $continua\ \varphi(z) =: f(x_0, y_0, z)$ è iniettiva per $z \in \mathbf{R}$, essendo, come inizialmentre osservato, $\frac{\partial f}{\partial z}(x_0, y_0, z) = \varphi'(z) > 0$. Pertanto per ogni (x_0, y_0) vi è al più uno z per cui $(x_0, y_0, z) \in G$, cioè $f(x_0, y_0, z) = 1$. In altri termini G è un grafico di una funzione di due variabili.
- D'altronde fissato (x_0, y_0) , si ha $\lim_{z \to \pm \infty} \varphi(z) = \pm \infty$: per il teorema del valor intermedio esiste uno z_0 per cui $f(x_0, y_0, z_0) = \varphi(z_0) = 1$. In altri termini il grafico G ha come proiezione sul piano x, y tutto \mathbf{R}^2 .

ESERCIZIO n. 3 (2pt) a- Si mostri che il campo $V=(V^1,V^2)=:\left(-\frac{y}{x^2+y^2},\frac{x}{x^2+y^2}\right)$ è conservativo sul semipiano x>0, e se ne calcoli una primitiva. (4pt) b- Se γ è il cammino $(x,x^2+1),\ x>0$, si calcoli $\int_{\gamma}V$. (7pt) c- Se ϕ è il cammino $(x,x^2-1),\ x\in\mathbf{R}$, si calcoli $\int_{\phi}V$.

Soluzione: a- il campo è quello solenoidale: nel dominio dato è noto che una sua primitiva è artan $\frac{y}{x}$. Volendo una dimostrazione diretta: essendo V chiuso su uno stellato è esatto (lemma di Poincaré): connettendo un suo punto (x_0,y_0) , ad esempio, con (1,0) con il cammino σ che parte orizzontalmente e linearmente da (1,0) sino ad arrivare a $(\sqrt{x_0^2+y_0^2},0):\sigma(t)=(1-t,0)+(t\sqrt{x_0^2+y_0^2},0)=(1+t(\sqrt{x_0^2+y_0^2}-1),0), 0\leq t\leq 1$, e quindi descrive in modo semplice l'arco di circonferenza di raggio $\sqrt{x_0^2+y_0^2}$ e centro (0,0) sino a terminare in (x_0,y_0) : $\sigma(t)=\sqrt{x_0^2+y_0^2}(\cos t,\sin t), \ 0\leq t\leq \arctan\frac{y_0}{x_0}, \ \text{una primitiva è data da } f(x_0,y_0)=:\int_{\sigma}V=\int_{0}^{1}\left[-\frac{0}{0^2+(\sqrt{x_0^2+y_0^2}-1)^2}(\sqrt{x_0^2+y_0^2}-1)+\frac{\sqrt{x_0^2+y_0^2}-1}{0^2+(\sqrt{x_0^2+y_0^2}-1)^2}0\right]dt+\int_{0}^{\arctan\frac{y_0}{x_0}}\left[-\frac{\sqrt{x_0^2+y_0^2}\sin t}{x_0^2+y_0^2}(-\sqrt{x_0^2+y_0^2}\sin t)+\frac{\sqrt{x_0^2+y_0^2}\cos t}{x_0^2+y_0^2}(\sqrt{x_0^2+y_0^2}\cos t)\right]dt=\\=\arctan\frac{y_0}{x_0}.$

b- L'argomento geometrico è che il cammino γ che percorre in modo semplice la mezzaparabola, si deforma, con la proiezione radiale dall'origine $t\gamma+(1-t)\frac{\gamma}{|\gamma|},\,t\in[0;1],\,$ su $\frac{\gamma}{|\gamma|},\,$ che percorre due volte ma in senso inverso l'arco di circonferenza unitaria tra gli angoli artan 2 e $\frac{\pi}{2}$, infatti la retta per l'origine e tangente alla parabola è y=2x: il lavoro è nullo.

- Volendo invece una soluzione più analitica : per prima cosa si osserva che $\langle V(x,1+x^2)\cdot(1,2x)\rangle$, che per $x\to\infty$ si comporta come $\frac{1}{1+x^2}$, è una funzione sommabile su $(0;+\infty)$. Il lavoro richiesto è definito elementarmente, e, detto γ_n il cammino ristretto ad $\left[\frac{1}{n};n\right]$, si ha

$$\int_{\gamma} V = \lim_{n \to \infty} \int_{\gamma_n} V = \int_{\frac{1}{n}}^n \frac{d}{dx} \left(f(\gamma(x)) \right) dx = \lim_{n \to \infty} \left[\arctan \frac{1 + n^2}{n} - \arctan \left(\left(1 + \frac{1}{n^2} \right) n \right) \right] = 0.$$

c- Il dominio D dato dal piano privato del semiasse verticale non negativo, contiene il sostegno di ϕ , è semplicemente connesso, ed ivi il campo è ancora chiuso.

- Per una soluzione geometrica: la parabola, $y=x^2-1$, si deforma nel dominio sulla circonferenza unitaria tranne (0,1) percosa in modo iniettivo: il lavoro del campo solenoidale è 2π .
- Per una soluzione analitica come sopra il lavoro richiesto ha senso come integale in x. (Per non far la fatica di esprimere analiticamente a pezzi un'unica primitiva di V su D, si considerano due primitive di V: una sul semipiano con $x \leq 0$ ed una sul semipiano con $x \geq 0$: D è unione dei due semispazi $D^- = D \cap \{(x,y) : x \leq 0\}$ e $D^+ = D \cap \{(x,y) : x \geq 0\}$, la cui intersezione, la semiretta verticale negativa aperta, incontra il sostegno di φ nel solo punto (0,-1). Quindi su $(D^-)^o$, $(D^+)^o$ si considerano due primitive che pur non raccordandosi con continuità, sono date dalla stessa espressione analitica artan $\frac{y}{x}$.)
- -- Si considera il cammino ϕ come giustapposizione delle sue due restrizioni ϕ^- agli x < 0 e ϕ^+ agli x > 0. Considerando le restrizioni a $\left[-n; -\frac{1}{n} \right]$ e a $\left[\frac{1}{n}; n \right]$: $\int_{\phi} V = \int_{\phi^-} V + \int_{\phi^+} V = \lim_{n \to \infty} \left[\arctan \left(\left(\frac{1}{n^2} 1 \right) (-n) \right) \arctan \frac{n^2 1}{-n} \right] + \lim_{n \to \infty} \left[\arctan \frac{n^2 1}{n} \arctan \left(\left(\frac{1}{n^2} 1 \right) n \right) \right] = \left[\frac{\pi}{2} \left(-\frac{\pi}{2} \right) \right] + \left[\frac{\pi}{2} \left(-\frac{\pi}{2} \right) \right] = 2\pi.$

ESERCIZIO n. 4 (5pt) Calcolare il flusso Φ del campo F(x, y, z) = (x, 1 - y, |z|) uscente dalla superficie laterale del doppio cono retto con base circolare di raggio unitario nel piano z = 0 e vertici (3, -2, 1), (3, -2, -1).

Soluzione. Non si può applicare direttamente il teorema della divergenza, in quanto il campo F non è differenzabile.

Però si osserva che sulla base comune dei due coni (che ha direzione normale (0,0,1)) il campo F ha la terza componente nulla, quindi esso ha flussi nulli attraverso questa base.

Ne deriva che il flusso uscente dalla sola superficie laterale del doppio cono è la somma dei flussi uscenti dalle superfici totali dei due coni.

Ora, sul cono pieno C^+ , quello con vertice (3, -2, 1), si ha F(x, y, z) = (x, 1 - y, z); dunque, per il teorema della divergenza, detto n il versore normale esterno a C^+ si ha

$$\int_{\partial C^+} \langle F, n \rangle \, d\sigma = \int_{C^+} \operatorname{div} F \, dx dy dz = \int_{C^+} 1 \, dx dy dz = m_3(C^+).$$

D'altronde, sul cono pieno C^- con vertice (3, -2, -1) e versore normale esterno ν , si ha F(x, y, z) = (x, 1 - y, -z), e pertanto, ancora per il teorema della divergenza,

$$\int_{\partial C^{-}} \langle F, \nu \rangle \, d\sigma = \int_{C^{-}} \operatorname{div} F \, dx dy dz = \int_{C^{-}} (-1) \, dx dy dz = -m_{3}(C^{-}) = -m_{3}(C^{+}).$$

Quindi il flusso complessivo Φ , che è la somma dei flussi ottenuti, è nullo.

ESERCIZIO n. 5 (2pt) a- Si calcolino le soluzioni dell'equazione differenziale u''(t) - 2u'(t) + u(t) = 0.

(2pt) b- Si calcolino le soluzioni dell'equazione differenziale $u'' - 2u' + u = e^t \sin t$.

(3pt) c- Si calcolino le soluzioni dell'equazione differenziale $u'' - 2u' + u = \frac{e^{t}}{1 + t^{2}}$.

(1pt) d- Si calcolino le soluzioni dell'equazione differenziale
$$u'' - 2u' + u = e^t \left(\sin t + \frac{1}{1 + t^2} \right)$$
.

Soluzione: a- il polinomio associato all'operatore differenziale è $(\lambda - 1)^2$ che ha l'unica radice reale $\lambda = 1$ e doppia. Quindi tutte le soluzioni reali dell'equazione differenziale omogenea associata sono del tipo $ae^{t\lambda} + bte^{t\lambda}$:

$$ae^t + bte^t$$
, $a, b \in \mathbf{R}$

b- Le soluzioni saranno del tipo f+g con f che varia tra le soluzioni dell'equazione omogenea e g soluzione particolare. Nel caso, per trovare una soluzione particolare si usa il metodo dei coefficienti arbitrari essendo il termine noto parte immaginaria dell'esponenziale complesso $e^{t(\alpha+i\beta)}=e^{t(1+i)}=e^t(\cos t+i\sin t)$. Poichè 1+i non è soluzione del polinomio associato si cercano soluzioni reali del tipo $g=ce^t\cos t+de^t\sin t,\ c,\ d\in \mathbf{R}$. Imponendo che una tale funzione si asoluzione si ottiene:

$$q'' - 2q' + q = -ce^t \cos t - de^t \sin t$$

e quindi, per indipendenza lineare delle funzione $e^t \cos t$ e $e^t \sin t$, perchè sia soluzione dell'equazione completa con il dato termine noto deve esser c = 0, d = -1. Pertanto le soluzioni sono

$$ae^t + bte^t + -e^t \sin t$$
, $a, b \in \mathbf{R}$

c- In questo caso la soluzione particolare si può trovare con il metodo della variazione delle costanti. Quindi si cerca una soluzione particolare del tipo g(t) = c(t)u(t) + d(t)v(t), con u, v soluzioni dell'omogena (nel caso e^t, te^t), e c, d funzioni da determinare imponendo che una tale g sia soluzione dell'equazione con il dato etrmine noto.

Come uso si impone a priori la condizione

$$c'u + d'v = e^tc' + te^td' = 0.$$

Pertanto si deve avere

$$\frac{e^t}{1+t^2} = g'' - 2g' + g = c'e^t + d'e^t(1+t)$$

Dalla prima condizione c' = -td', sostituendo nella seconda si ottiene $d' = \frac{1}{1+t^2}$. Quindi

$$g(t) = e^t \log \frac{1}{\sqrt{1+t^2}} + te^t \operatorname{artan} t.$$

d- Essendo l'equazione lineare con termine noto somma di diverse funzioni, le soluzioni sono le somme di soluzioni delle equazioni con termine noto ogni singolo addendo del termine noto iniziale.